Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(5^(x)dx)/(sqrt(5^(2x)+3*5^(-x)+1))

5xdx52x+35x+1 \int \frac{5^{x} d x}{\sqrt{5^{2 x}+3 \cdot 5^{-x}+1}}

Full solution

Q. 5xdx52x+35x+1 \int \frac{5^{x} d x}{\sqrt{5^{2 x}+3 \cdot 5^{-x}+1}}
  1. Rewrite Integral: Rewrite the integral in a more convenient form.\newlineWe have the integral:\newline5xdx52x+35x+1\int\frac{5^{x}\,dx}{\sqrt{5^{2x}+3\cdot 5^{-x}+1}}\newlineNotice that 52x5^{2x} can be written as (5x)2(5^x)^2 and 5x5^{-x} as 15x\frac{1}{5^x}.\newlineRewrite the integral as:\newline5xdx(5x)2+3(15x)+1\int\frac{5^{x}\,dx}{\sqrt{(5^x)^2 + 3\cdot \left(\frac{1}{5^x}\right) + 1}}
  2. Make Substitution: Make a substitution to simplify the integral.\newlineLet u=5xu = 5^x, then dudx=ln(5)5x\frac{du}{dx} = \ln(5)\cdot5^x, so dx=du(ln(5)5x)dx = \frac{du}{(\ln(5)\cdot5^x)}.\newlineSubstitute uu and dxdx into the integral:\newline5xdx(5x)2+3(15x)+1=u(ln(5)u)1u2+3u+1du\int\frac{5^{x}dx}{\sqrt{(5^x)^2 + 3\cdot(\frac{1}{5^x}) + 1}} = \int\frac{u}{(\ln(5)\cdot u)} \cdot \frac{1}{\sqrt{u^2 + \frac{3}{u} + 1}} du\newlineSimplify the integral:\newline=(1ln(5))1u2+3u+1du= (\frac{1}{\ln(5)}) \cdot \int\frac{1}{\sqrt{u^2 + \frac{3}{u} + 1}} du
  3. Simplify Expression: Simplify the expression inside the square root.\newlineWe have the integral:\newline(1ln(5))(1u2+3u+1du)(\frac{1}{\ln(5)}) \cdot \int(\frac{1}{\sqrt{u^2 + \frac{3}{u} + 1}} \, du)\newlineNotice that u2+3u+1u^2 + \frac{3}{u} + 1 can be rewritten as u2+3u1+1u^2 + 3u^{-1} + 1 to have a common denominator.\newlineCombine the terms under the square root:\newline=(1ln(5))(1u2+3u1+1du)= (\frac{1}{\ln(5)}) \cdot \int(\frac{1}{\sqrt{u^2 + 3u^{-1} + 1}} \, du)
  4. Further Simplification: Attempt to simplify the expression under the square root further.\newlineWe have the integral:\newline(1ln(5))×1u2+3u1+1du(\frac{1}{\ln(5)}) \times \int \frac{1}{\sqrt{u^2 + 3u^{-1} + 1}} \, du\newlineHowever, the expression under the square root does not factor nicely, and it does not resemble any standard form that allows for a simple substitution. This suggests that the integral may not have a solution in terms of elementary functions, or it may require a more complex substitution or method that is not immediately apparent.
  5. Conclude Solution: Conclude that the integral may not be solvable using elementary functions. Since the expression under the square root does not simplify to a form that allows for easy integration, and no obvious substitution is apparent, we conclude that the integral may not have a solution in terms of elementary functions. Advanced methods or numerical integration may be required to evaluate this integral.