Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(5^(-x)dx)/(sqrt(5^(2)x+3*5^(x)+1))

5xdx52x+35x+1 \int \frac{5^{-x} d x}{\sqrt{5^{2} x+3 \cdot 5^{x}+1}}

Full solution

Q. 5xdx52x+35x+1 \int \frac{5^{-x} d x}{\sqrt{5^{2} x+3 \cdot 5^{x}+1}}
  1. Simplify Integral Expression: Let's start by simplifying the integral expression: 5xdx52x+35x+1\int \frac{5^{-x}\,dx}{\sqrt{5^{2x}+3\cdot 5^{x}+1}} We can rewrite 52x5^{2x} as (5x)2(5^x)^2 to make the expression inside the square root look like a quadratic in terms of 5x5^x.
  2. Set u=5xu = 5^x: Now, let's set u=5xu = 5^x. Then dudx=ln(5)5x\frac{du}{dx} = \ln(5) \cdot 5^x. We need to express dxdx in terms of dudu, so we solve for dxdx: dx=du(ln(5)5x)dx = \frac{du}{(\ln(5) \cdot 5^x)}.
  3. Substitute uu and dxdx: Substitute u=5xu = 5^x and dx=du(ln(5)5x)dx = \frac{du}{(\ln(5) \cdot 5^x)} into the integral:\newline5xdx52x+35x+1=5xdu(ln(5)5x)u2+3u+1\int \frac{5^{-x}dx}{\sqrt{5^{2x}+3\cdot 5^{x}+1}} = \int \frac{5^{-x} \cdot du}{(\ln(5) \cdot 5^x)\sqrt{u^2+3u+1}}\newlineSimplify the integral by canceling out 5x5^x in the numerator and denominator:\newline=du(ln(5)u2+3u+1)= \int \frac{du}{(\ln(5) \cdot \sqrt{u^2+3u+1})}
  4. Simplify Integral in terms of uu: Now we have an integral in terms of uu:du(ln(5)u2+3u+1)\int \frac{du}{(\ln(5) \cdot \sqrt{u^2+3u+1})}This integral does not have an elementary antiderivative, so we need to use numerical methods or special functions to evaluate it. However, since we are asked for an indefinite integral, we can leave the answer in terms of an integral expression involving uu.
  5. Express Indefinite Integral: We express the indefinite integral in terms of uu and then substitute back to get the final answer in terms of xx:
    Indefinite integral: (1/ln(5))(duu2+3u+1)+C(1/\ln(5)) \cdot \int(\frac{du}{\sqrt{u^2+3u+1}}) + C
    Substitute u=5xu = 5^x back into the expression:
    Indefinite integral: (1/ln(5))(du(5x)2+35x+1)+C(1/\ln(5)) \cdot \int(\frac{du}{\sqrt{(5^x)^2+3\cdot 5^x+1}}) + C
  6. Substitute back for Final Answer: The final answer in terms of xx is:\newlineIndefinite integral: 1ln(5)\frac{1}{\ln(5)} * du(5x)2+35x+1+C\int \frac{du}{\sqrt{(5^x)^2+3\cdot 5^x+1}} + C