Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Evaluate the integral: int(-5)/(36+4x^(2))dx

Evaluate the integral: 536+4x2dx \int \frac{-5}{36+4 x^{2}} d x

Full solution

Q. Evaluate the integral: 536+4x2dx \int \frac{-5}{36+4 x^{2}} d x
  1. Given Integral Simplification: We are given the integral: \newline536+4x2dx\int \frac{-5}{36+4x^{2}}\,dx\newlineFirst, we can simplify the integral by factoring out the constant from the denominator: \newline54(9+x2)dx\int \frac{-5}{4(9+x^{2})}\,dx\newlineNow, we can pull out the constant 54-\frac{5}{4} from the integral: \newline54×19+x2dx-\frac{5}{4} \times \int \frac{1}{9+x^{2}}\,dx
  2. Constant Factor Extraction: Next, we recognize that the integral has the form of the inverse tangent function, where the integral of 1a2+x2\frac{1}{a^2 + x^2}dx is 1aarctan(xa)+C\frac{1}{a} \cdot \text{arctan}(\frac{x}{a}) + C. In our case, a2=9a^2 = 9, so a=3a = 3. Therefore, we can rewrite the integral as: 5413arctan(x3)+C-\frac{5}{4} \cdot \frac{1}{3} \cdot \text{arctan}(\frac{x}{3}) + C
  3. Inverse Tangent Function Integration: Now, we can simplify the constant factor:\newline54×13=512-\frac{5}{4} \times \frac{1}{3} = -\frac{5}{12}\newlineSo the integral becomes:\newline512×arctan(x3)+C-\frac{5}{12} \times \text{arctan}(\frac{x}{3}) + C