Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(4e^(3x)+1)dx

(4e3x+1)dx \int\left(4 e^{3 x}+1\right) d x

Full solution

Q. (4e3x+1)dx \int\left(4 e^{3 x}+1\right) d x
  1. Break down into two integrals: Break down the integral into two separate integrals. \int(\(4e^{33x} + 11)\,dx = \int(44e^{33x})\,dx + \int(11)\,dx
  2. Integrate 4e3x4e^{3x}: Integrate the first part (4e3x)dx\int(4e^{3x})\,dx. To integrate 4e3x4e^{3x}, we use the substitution method. Let u=3xu = 3x, which implies dudx=3\frac{du}{dx} = 3 or dx=du3dx = \frac{du}{3}. Therefore, the integral becomes (43)(eu)du\left(\frac{4}{3}\right)\int(e^u)\,du.
  3. Perform integration of eue^u: Perform the integration of eue^u. The integral of eue^u with respect to uu is eue^u. So, (4/3)(eu)du=(4/3)eu+C(4/3)\int(e^u)\,du = (4/3)e^u + C, where CC is the constant of integration.
  4. Substitute back u=3xu = 3x: Substitute back u=3xu = 3x into the integral.\newlineSubstituting back, we get (43)e(3x)+C(\frac{4}{3})e^{(3x)} + C.
  5. Integrate 11: Integrate the second part (1)dx\int(1)\,dx. The integral of 11 with respect to xx is xx. So, (1)dx=x+C\int(1)\,dx = x + C', where CC' is another constant of integration.
  6. Combine results: Combine the results from Step 44 and Step 55.\newlineThe combined integral is (43)e(3x)+x+C(\frac{4}{3})e^{(3x)} + x + C'', where CC'' is a new constant of integration that combines CC and CC'.
  7. Write final answer: Write the final answer.\newlineThe indefinite integral of the function 4e3x+14e^{3x} + 1 with respect to xx is (43)e3x+x+C(\frac{4}{3})e^{3x} + x + C.