Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(16x204x212x+10)dx\int\left(\frac{16x-20}{4x^{2}-12x+10}\right)dx

Full solution

Q. (16x204x212x+10)dx\int\left(\frac{16x-20}{4x^{2}-12x+10}\right)dx
  1. Simplify Denominator: Simplify the denominator of the integrand.\newlineWe have the integral:\newline(16x20)dx4x212x+10\int\frac{(16x - 20)\,dx}{4x^2 - 12x + 10}\newlineFirst, we can factor out a 44 from the denominator to simplify the expression:\newline(16x20)dx4(x23x+2.5)\int\frac{(16x - 20)\,dx}{4(x^2 - 3x + 2.5)}\newlineNow, we can cancel out the common factor of 44 from the numerator and the denominator:\newline4(4x5)dx4(x23x+2.5)\int\frac{4(4x - 5)\,dx}{4(x^2 - 3x + 2.5)}\newline= (4x5)dxx23x+2.5\int\frac{(4x - 5)\,dx}{x^2 - 3x + 2.5}
  2. Complete Square: Complete the square for the denominator.\newlineThe denominator is a quadratic expression, and we can complete the square to make it easier to integrate:\newlinex23x+2.5x^2 - 3x + 2.5 can be written as (x1.5)21.52+2.5(x - 1.5)^2 - 1.5^2 + 2.5\newline= (x1.5)20.25(x - 1.5)^2 - 0.25\newlineNow, the integral becomes:\newline((4x5)dx)/((x1.5)20.25)\int((4x - 5)dx) / ((x - 1.5)^2 - 0.25)
  3. Use Substitution: Use substitution to solve the integral.\newlineLet u=(x1.5)20.25u = (x - 1.5)^2 - 0.25, then du=2(x1.5)dxdu = 2(x - 1.5)dx.\newlineTo match the numerator 4x54x - 5, we need to express it in terms of (x1.5)(x - 1.5). We can rewrite the numerator as:\newline4x5=4(x1.5)+14x - 5 = 4(x - 1.5) + 1\newlineNow, we can split the integral into two parts:\newline((4(x1.5)+1)dx)/(u)\int((4(x - 1.5) + 1)dx) / (u)\newline=4((x1.5)dx)/(u)+(dx)/(u)= 4 * \int((x - 1.5)dx) / (u) + \int(dx) / (u)\newlineFor the first part, we can use the substitution:\newline4((x1.5)dx)/(u)=412(du)/(u)=2(du)/(u)4 * \int((x - 1.5)dx) / (u) = 4 * \frac{1}{2} * \int(du) / (u) = 2 * \int(du) / (u)\newlineFor the second part, we need to adjust the substitution to match the dx term:\newline(dx)/(u)=(du)/(2(x1.5)(u))\int(dx) / (u) = \int(du) / (2(x - 1.5)(u))\newlineHowever, we cannot directly integrate the second part as it stands because it does not match our substitution. We need to express (x1.5)(x - 1.5) in terms of du=2(x1.5)dxdu = 2(x - 1.5)dx00.