Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
y(x-1)=z then 
x=

y-z

z//y+1

y(z-1)

z(y-1)
1-zy

22. If y(x1)=z y(x-1)=z then x= x= \newline11. yz y-z \newline22. z/y+1 z / y+1 \newline33. y(z1) y(z-1) \newline44. z(y1) z(y-1) \newline55. 11-zyzy

Full solution

Q. 22. If y(x1)=z y(x-1)=z then x= x= \newline11. yz y-z \newline22. z/y+1 z / y+1 \newline33. y(z1) y(z-1) \newline44. z(y1) z(y-1) \newline55. 11-zyzy
  1. Isolate x term: Given the equation y(x1)=zy(x-1)=z, we want to solve for xx in terms of yy and zz. First, we isolate the term with xx by dividing both sides of the equation by yy: x1=zyx - 1 = \frac{z}{y}
  2. Add 11 to both sides: Next, we add 11 to both sides of the equation to solve for xx: \newlinex=zy+1x = \frac{z}{y} + 1
  3. Check for matching option: Now we have the expression for xx in terms of yy and zz. We can check the given options to see which one matches our derived expression:\newlinex=zy+1x = \frac{z}{y} + 1\newlineThe correct option that matches this expression is zy+1\frac{z}{y} + 1.

More problems from Euler's method