Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

h(n)=-91*(-(1)/(7))^(n-1)
Complete the recursive formula of h(n).
h(1)=◻
h(n)=h(n-1).◻

h(n)=91(17)n1h(n)=-91\cdot\left(-\frac{1}{7}\right)^{n-1}\newlineComplete the recursive formula of h(n)h(n).\newlineh(1)= h(1)=\square\newlineh(n)=h(n1)h(n)=h(n-1) \cdot \square

Full solution

Q. h(n)=91(17)n1h(n)=-91\cdot\left(-\frac{1}{7}\right)^{n-1}\newlineComplete the recursive formula of h(n)h(n).\newlineh(1)= h(1)=\square\newlineh(n)=h(n1)h(n)=h(n-1) \cdot \square
  1. Calculate h(2)h(2): Now, let's find h(2)h(2) to see the pattern between consecutive terms.h(2)=91×((1)/7)21=91×((1)/7)1=91×(1/7)=91/7=13h(2) = -91 \times (-(1)/7)^{2-1} = -91 \times (-(1)/7)^1 = -91 \times (-1/7) = 91/7 = 13
  2. Verify pattern with h(3)h(3): We can see that h(2)h(2) is obtained by multiplying h(1)h(1) by 17-\frac{1}{7}. Let's verify this pattern by calculating h(3)h(3) and checking if it follows the same rule. h(\(3) = 91-91 \times \left(-\frac{11}{77}\right)^{331-1} = 91-91 \times \left(-\frac{11}{77}\right)^22 = 91-91 \times \frac{11}{4949} = -\frac{9191}{4949} = 91-91 \times \left(\frac{11}{77}\right)^22 = -\frac{9191}{77} \times \frac{11}{77} = 1313 \times \left(-\frac{11}{77}\right) = -\frac{1313}{77} = 1-1.8571428571485714285714 \text{ (approximately)}
  3. Establish recursive formula: The pattern is consistent. Each term h(n)h(n) is obtained by multiplying the previous term h(n1)h(n-1) by 17-\frac{1}{7}.\newlineTherefore, the recursive formula for h(n)h(n) is:\newlineh(n)=h(n1)×(17)h(n) = h(n-1) \times (-\frac{1}{7})
  4. Write complete formula: Now we can write the complete recursive formula for the sequence:\newlineh(1)=91h(1) = -91\newlineh(n)=h(n1)×(17)h(n) = h(n-1) \times (-\frac{1}{7}) for n > 1