Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0, the expression 
root(4)(x^(11)) is equivalent to

x^(2)root(4)(x^(3))

x^(2)

x^(3)

x^(2)root(4)(x^(2))

Given x>0 , the expression x114 \sqrt[4]{x^{11}} is equivalent to\newlinex2x34 x^{2} \sqrt[4]{x^{3}} \newlinex2 x^{2} \newlinex3 x^{3} \newlinex2x24 x^{2} \sqrt[4]{x^{2}}

Full solution

Q. Given x>0 x>0 , the expression x114 \sqrt[4]{x^{11}} is equivalent to\newlinex2x34 x^{2} \sqrt[4]{x^{3}} \newlinex2 x^{2} \newlinex3 x^{3} \newlinex2x24 x^{2} \sqrt[4]{x^{2}}
  1. Question Prompt: The question_prompt: What is the expression x114\sqrt[4]{x^{11}} equivalent to given x > 0?
  2. Simplify Expression: To simplify x114\sqrt[4]{x^{11}}, we can express x11x^{11} as x8×x3x^{8} \times x^{3} because 8+3=118 + 3 = 11.
  3. Split Exponents: Now, we can take the fourth root of x8×x3x^{8} \times x^{3} separately. The fourth root of x8x^{8} is x84=x2x^{\frac{8}{4}} = x^{2} because the exponent 88 is divisible by 44.
  4. Calculate Fourth Root: The fourth root of x3x^{3} remains as it is because the exponent 33 is not divisible by 44. So, we have x2x34x^{2} \cdot \sqrt[4]{x^{3}}.
  5. Final Expression: Therefore, the expression x114\sqrt[4]{x^{11}} is equivalent to x2x34x^{2} \cdot \sqrt[4]{x^{3}}, which matches one of the given options.