Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
x > 0 and 
y > 0, select the expression that is equivalent to

sqrt(-16x^(8)y^(3))

-4x^(4)y^((3)/(2))

-4x^(6)y

4ix^(4)y^((3)/(2))

4ix^(6)y

Given x>0 and y>0 , select the expression that is equivalent to\newline16x8y3 \sqrt{-16 x^{8} y^{3}} \newline4x4y32 -4 x^{4} y^{\frac{3}{2}} \newline4x6y -4 x^{6} y \newline4ix4y32 4 i x^{4} y^{\frac{3}{2}} \newline4ix6y 4 i x^{6} y

Full solution

Q. Given x>0 x>0 and y>0 y>0 , select the expression that is equivalent to\newline16x8y3 \sqrt{-16 x^{8} y^{3}} \newline4x4y32 -4 x^{4} y^{\frac{3}{2}} \newline4x6y -4 x^{6} y \newline4ix4y32 4 i x^{4} y^{\frac{3}{2}} \newline4ix6y 4 i x^{6} y
  1. Simplify inside square root: First, we need to simplify the expression inside the square root. The square root of a negative number involves the imaginary unit ii, where i2=1i^2 = -1. Therefore, we can rewrite the expression as 1×16x8y3\sqrt{-1} \times \sqrt{16x^{8}y^{3}}.
  2. Simplify square roots: Next, we can simplify the square root of 1-1 as ii, and the square root of 16x8y316x^{8}y^{3} as 4x4y324x^{4}y^{\frac{3}{2}}, since 1616 is a perfect square and x8x^{8} and y3y^{3} have exponents that are multiples of 22.
  3. Multiply simplified expressions: Multiplying these two results together, we get i×4x4y32i \times 4x^{4}y^{\frac{3}{2}}, which simplifies to 4ix4y324ix^{4}y^{\frac{3}{2}}.
  4. Check for correct answer: Now we need to check if our result matches any of the given options. The correct expression equivalent to 16x8y3\sqrt{-16x^{8}y^{3}} is 4ix4y324ix^{4}y^{\frac{3}{2}}.