Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the value of 
int_(4)^(6)(9)/(10-3x)dx. Write your answer as the logarithm of a single number in simplest form.
Answer: 
ln(◻)

Find the value of 469103xdx \int_{4}^{6} \frac{9}{10-3 x} d x . Write your answer as the logarithm of a single number in simplest form.\newlineAnswer: ln() \ln (\square)

Full solution

Q. Find the value of 469103xdx \int_{4}^{6} \frac{9}{10-3 x} d x . Write your answer as the logarithm of a single number in simplest form.\newlineAnswer: ln() \ln (\square)
  1. Recognize standard form natural logarithm: Recognize the integral as a standard form of the natural logarithm function.\newlineThe integral of 1abx\frac{1}{a - bx}dx is equal to 1blnabx+C-\frac{1}{b} \cdot \ln|a - bx| + C, where aa and bb are constants. In our case, a=10a = 10 and b=3b = 3.
  2. Apply formula to integral: Apply the formula to the integral. \newline469103xdx=9×461103xdx\int_{4}^{6}\frac{9}{10-3x}\,dx = 9 \times \int_{4}^{6}\frac{1}{10-3x}\,dx\newlineUsing the formula from Step 11, we get:\newline=9×(13)×ln103x= 9 \times \left(-\frac{1}{3}\right) \times \ln|10 - 3x| evaluated from 44 to 66.
  3. Evaluate natural logarithm at bounds: Evaluate the natural logarithm at the bounds.\newlineFirst, plug in the upper bound x=6x = 6:\newlineln103×6=ln1018=ln8\ln|10 - 3\times 6| = \ln|10 - 18| = \ln|-8|\newlineSince the natural logarithm function only takes positive arguments, we use the absolute value to get ln(8)\ln(8).\newlineNext, plug in the lower bound x=4x = 4:\newlineln103×4=ln1012=ln2\ln|10 - 3\times 4| = \ln|10 - 12| = \ln|-2|\newlineSimilarly, we use the absolute value to get ln(2)\ln(2).\newlineNow we have:\newline9×(1/3)×(ln(8)ln(2))9 \times (-1/3) \times (\ln(8) - \ln(2))
  4. Simplify the expression: Simplify the expression.\newline9×(13)×(ln(8)ln(2))=3×(ln(8)ln(2))9 \times (-\frac{1}{3}) \times (\ln(8) - \ln(2)) = -3 \times (\ln(8) - \ln(2))\newlineSince ln(a)ln(b)=ln(ab)\ln(a) - \ln(b) = \ln(\frac{a}{b}), we can combine the logarithms:\newline=3×ln(82)= -3 \times \ln(\frac{8}{2})\newline=3×ln(4)= -3 \times \ln(4)
  5. Express answer as single number: Express the answer as the logarithm of a single number.\newlineSince 3×ln(4)-3 \times \ln(4) is equivalent to ln(43)\ln(4^{-3}), we can write the final answer as:\newlineln(43)=ln(164)\ln(4^{-3}) = \ln(\frac{1}{64})