Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

intx^(2)(x+5)^(2)dx
Answer:

Evaluate the integral.\newlinex2(x+5)2 dx \int x^{2}(x+5)^{2} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newlinex2(x+5)2 dx \int x^{2}(x+5)^{2} \mathrm{~d} x \newlineAnswer:
  1. Expand Integrands: To evaluate the integral of x2(x+5)2x^2(x+5)^2, we first expand the integrand to make the integration process straightforward.\newlineI=x2(x+5)2dxI = \int x^2(x+5)^2 \, dx\newlineI=x2(x2+10x+25)dxI = \int x^2(x^2 + 10x + 25) \, dx\newlineI=(x4+10x3+25x2)dxI = \int (x^4 + 10x^3 + 25x^2) \, dx
  2. Integrate Each Term: Now we integrate each term separately.\newlineI=x4dx+10x3dx+25x2dxI = \int x^4 \, dx + \int 10x^3 \, dx + \int 25x^2 \, dx\newlineI=15x5+104x4+253x3+CI = \frac{1}{5}x^5 + \frac{10}{4}x^4 + \frac{25}{3}x^3 + C\newlineI=15x5+52x4+253x3+CI = \frac{1}{5}x^5 + \frac{5}{2}x^4 + \frac{25}{3}x^3 + C
  3. Simplify Final Answer: We simplify the expression to get the final answer. I=15x5+52x4+253x3+CI = \frac{1}{5}x^5 + \frac{5}{2}x^4 + \frac{25}{3}x^3 + C