Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

intx^(-2)ln(-x)dx
Answer:

Evaluate the integral.\newlinex2ln(x)dx \int x^{-2} \ln (-x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newlinex2ln(x)dx \int x^{-2} \ln (-x) d x \newlineAnswer:
  1. Recognize integral involves logarithmic function: Recognize that the integral involves a logarithmic function and a power of xx. To solve this, we will use integration by parts, which states that udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are differentiable functions of xx.
  2. Choose uu and dvdv: Choose u=ln(x)u = \ln(-x) and dv=x2dxdv = x^{-2}\,dx. Then we need to find dudu and vv. Differentiating uu gives us du=1(x)dxdu = \frac{1}{(-x)}\,dx, and integrating dvdv gives us v=x1v = -x^{-1}.
  3. Apply integration by parts formula: Apply the integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du.
  4. Substitute uu, vv, dudu, dvdv: Substitute the chosen uu, vv, dudu, and dvdv into the formula to get x2ln(x)dx=ln(x)(x1)(x1)(1x)dx\int x^{-2}\ln(-x)\,dx = \ln(-x)(-x^{-1}) - \int(-x^{-1})(\frac{1}{-x})\,dx.
  5. Simplify the integral: Simplify the integral: x2ln(x)dx=ln(x)x1x2dx\int x^{-2}\ln(-x)dx = -\frac{\ln(-x)}{x} - \int\frac{1}{x^2}dx.
  6. Integral of 1/x21/x^2: The integral of 1/x21/x^2 is 1/x-1/x. So, we have x2ln(x)dx=ln(x)/x+1/x+C\int x^{-2}\ln(-x)dx = -\ln(-x)/x + 1/x + C, where CC is the constant of integration.
  7. Combine terms for final answer: Combine the terms to get the final answer: x2ln(x)dx=(ln(x)1)/x+C\int x^{-2}\ln(-x)\,dx = \left(-\ln(-x) - 1\right)/x + C.