Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int6xe^(x+2)dx
Answer:

Evaluate the integral.\newline6xex+2dx \int 6 x e^{x+2} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline6xex+2dx \int 6 x e^{x+2} d x \newlineAnswer:
  1. Choose uu and dvdv: To solve the integral of 6xe(x+2)6xe^{(x+2)} with respect to xx, we will use integration by parts, which is based on the formula udv=uvvdu\int u\, dv = uv - \int v\, du. We need to choose uu and dvdv such that the resulting integral is simpler to solve.\newlineLet's choose u=6xu = 6x and dv=e(x+2)dxdv = e^{(x+2)}\,dx.
  2. Find dudu and vv: We need to find dudu and vv. Differentiating uu with respect to xx gives us du=6dxdu = 6dx. Integrating dvdv with respect to xx gives us v=e(x+2)v = e^{(x+2)}.
  3. Apply integration by parts: Now we apply the integration by parts formula:\newlineudv=uvvdu\int u \, dv = uv - \int v \, du\newline6xe(x+2)dx=6xe(x+2)e(x+2)6dx\int 6xe^{(x+2)}dx = 6x \cdot e^{(x+2)} - \int e^{(x+2)} \cdot 6dx
  4. Integrate the second term: We can now integrate the second term:\newlinee(x+2)6dx=6e(x+2)dx\int e^{(x+2)} \cdot 6\,dx = 6 \cdot \int e^{(x+2)}\,dx\newlineTo integrate e(x+2)e^{(x+2)}, we use the fact that the integral of exe^x is exe^x. Therefore, the integral of e(x+2)e^{(x+2)} is also e(x+2)e^{(x+2)}.
  5. Substitute back into formula: So the integral of 6e(x+2)6e^{(x+2)}dx is 6e(x+2)6e^{(x+2)}. Now we can substitute this back into our integration by parts formula: 6xe(x+2)dx=6xe(x+2)6e(x+2)\int 6xe^{(x+2)}dx = 6x \cdot e^{(x+2)} - 6 \cdot e^{(x+2)}
  6. Simplify the expression: We can simplify the expression:\newline6xe(x+2)dx=6xe(x+2)6e(x+2)+C\int 6xe^{(x+2)}dx = 6xe^{(x+2)} - 6e^{(x+2)} + C\newlineHere, CC is the constant of integration.
  7. Final indefinite integral: We have now found the indefinite integral of 6xe(x+2)6xe^{(x+2)} with respect to xx: 6xe(x+2)dx=6xe(x+2)6e(x+2)+C\int 6xe^{(x+2)}dx = 6xe^{(x+2)} - 6e^{(x+2)} + C