Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int5xe^(x+6)dx
Answer:

Evaluate the integral.\newline5xex+6dx \int 5 x e^{x+6} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline5xex+6dx \int 5 x e^{x+6} d x \newlineAnswer:
  1. Set Up Integral: Let's start by setting up the integral that we need to evaluate:\newlineI=5xe(x+6)dxI = \int 5xe^{(x+6)}\,dx\newlineWe can see that this is an integration problem that requires the use of integration by parts, which is given by the formula udv=uvvdu\int u\, dv = uv - \int v\, du, where uu and dvdv are parts of the integrand that we choose.
  2. Choose uu and dvdv: Choose uu and dvdv for the integration by parts. A good choice here is to let u=5xu = 5x, because its derivative will be simpler, and dv=e(x+6)dxdv = e^{(x+6)}dx, because its integral is straightforward.\newlineSo we have:\newlineu=5xu = 5x, which means du=5dxdu = 5dx\newlinedv=e(x+6)dxdv = e^{(x+6)}dx, which means v=e(x+6)v = e^{(x+6)} since the derivative of dvdv00 is dvdv11.
  3. Apply Integration by Parts: Apply the integration by parts formula:\newlineI=uvvduI = uv - \int v \, du\newlineSubstitute uu, dudu, vv, and dvdv into the formula:\newlineI=5xe(x+6)e(x+6)5dxI = 5x \cdot e^{(x+6)} - \int e^{(x+6)} \cdot 5 \, dx
  4. Integrate Second Term: Now we integrate the second term:\newlinee(x+6)5dx=5e(x+6)\int e^{(x+6)} \cdot 5\,dx = 5 \cdot e^{(x+6)}\newlineSo the integral becomes:\newlineI=5xe(x+6)5e(x+6)I = 5x \cdot e^{(x+6)} - 5 \cdot e^{(x+6)}
  5. Simplify Expression: Simplify the expression by factoring out e(x+6)e^{(x+6)}:I=e(x+6)(5x5)I = e^{(x+6)} \cdot (5x - 5)
  6. Add Constant of Integration: Finally, we can add the constant of integration, CC, to our result:\newlineI=e(x+6)(5x5)+CI = e^{(x+6)} \cdot (5x - 5) + C\newlineThis is the indefinite integral of the given function.