Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int5xe^(3x)dx
Answer:

Evaluate the integral.\newline5xe3xdx \int 5 x e^{3 x} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline5xe3xdx \int 5 x e^{3 x} d x \newlineAnswer:
  1. Identify integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 5xe3x5xe^{3x} with respect to xx. This is an integration problem that requires the use of integration by parts, which is based on the formula udv=uvvdu\int u \, dv = uv - \int v \, du.
  2. Choose uu and dvdv: Choose uu and dvdv.\newlineLet u=5xu = 5x, which implies that du=5dxdu = 5 \, dx.\newlineLet dv=e3xdxdv = e^{3x} \, dx, which implies that v=13e3xv = \frac{1}{3}e^{3x} after integrating dvdv with respect to xx.
  3. Apply integration by parts: Apply the integration by parts formula.\newlineUsing the integration by parts formula, we have:\newline5xe3xdx=uvvdu\int 5xe^{3x} dx = uv - \int v du\newline= (5x)(13)e3x(13)e3x(5dx)(5x)(\frac{1}{3})e^{3x} - \int(\frac{1}{3})e^{3x}(5 dx)
  4. Simplify and integrate: Simplify and integrate the remaining integral.\newline=53xe3x53e3xdx= \frac{5}{3}xe^{3x} - \frac{5}{3}\int e^{3x} dx\newlineNow we integrate e3xe^{3x} with respect to xx, which gives us 13e3x\frac{1}{3}e^{3x}.
  5. Substitute and simplify: Substitute the integral and simplify.\newline= (53)xe(3x)(53)(13)e(3x)+C(\frac{5}{3})xe^{(3x)} - (\frac{5}{3})\cdot(\frac{1}{3})e^{(3x)} + C\newline= (53)xe(3x)(59)e(3x)+C(\frac{5}{3})xe^{(3x)} - (\frac{5}{9})e^{(3x)} + C
  6. Combine and write final answer: Combine like terms and write the final answer.\newlineThe final answer is the integral of 5xe3x5xe^{3x} with respect to xx:\newline=53xe3x59e3x+C= \frac{5}{3}xe^{3x} - \frac{5}{9}e^{3x} + C