Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int4x^(2)sin(3x)dx
Answer:

Evaluate the integral.\newline4x2sin(3x)dx \int 4 x^{2} \sin (3 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline4x2sin(3x)dx \int 4 x^{2} \sin (3 x) d x \newlineAnswer:
  1. Integration by Parts: Let's use integration by parts to solve the integral of 4x2sin(3x)dx4x^2\sin(3x)\,dx. The integration by parts formula is udv=uvvdu\int u\, dv = uv - \int v\, du. We will let u=x2u = x^2 and dv=4sin(3x)dxdv = 4\sin(3x)\,dx. Then we need to find dudu and vv.
  2. Find dudu: First, we differentiate u=x2u = x^2 to find dudu. The derivative of x2x^2 with respect to xx is 2x2x, so du=2xdxdu = 2x\,dx.
  3. Find vv: Next, we integrate dv=4sin(3x)dxdv = 4\sin(3x)dx to find vv. The integral of sin(3x)\sin(3x) with respect to xx is 13cos(3x)-\frac{1}{3}\cos(3x), so v=43cos(3x)v = -\frac{4}{3}\cos(3x).
  4. Apply Integration by Parts: Now we apply the integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du. Substituting the values we have:\newline$\int \(4\)x^\(2\)\sin(\(3\)x)\,dx = x^\(2\)\left(-\frac{\(4\)}{\(3\)}\cos(\(3\)x)\right) - \int\left(-\frac{\(4\)}{\(3\)}\cos(\(3\)x)\right)(\(2\)x)\,dx.
  5. Simplify Expression: Simplify the expression: \(\int 4x^2\sin(3x)\,dx = -\frac{4}{3}x^2\cos(3x) + \left(\frac{8}{3}\right)\int x \cos(3x)\,dx\). Now we need to integrate \(\left(\frac{8}{3}\right)\int x \cos(3x)\,dx\), which again requires integration by parts.
  6. New Integration by Parts: For the new integration by parts, let \(u = x\) and \(dv = \left(\frac{8}{3}\right)\cos(3x)dx\). Then \(du = dx\) and \(v = \left(\frac{8}{3}\right)\left(\frac{1}{3}\right)\sin(3x) = \left(\frac{8}{9}\right)\sin(3x)\).
  7. Apply Integration by Parts: Apply the integration by parts formula to the new integral: \(\frac{8}{3}\int x \cos(3x)\,dx = \frac{8}{9}x\sin(3x) - \frac{8}{9}\int \sin(3x)\,dx\).
  8. Integrate \(\sin(3x)\): Now we integrate \((8/9)\int\sin(3x)\,dx\). The integral of \(\sin(3x)\) with respect to \(x\) is \(-1/3\cos(3x)\), so we have:\(\newline\)\((8/9)\int\sin(3x)\,dx = -(8/9)(1/3)\cos(3x) = -(8/27)\cos(3x)\).
  9. Substitute Result: Substitute the result back into our expression:\(\newline\)\(\int 4x^2\sin(3x)\,dx = -\frac{4}{3}x^2\cos(3x) + \frac{8}{9}x\sin(3x) - \frac{8}{27}\cos(3x) + C\), where \(C\) is the constant of integration.