Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int3xe^(-4x)dx
Answer:

Evaluate the integral.\newline3xe4xdx \int 3 x e^{-4 x} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline3xe4xdx \int 3 x e^{-4 x} d x \newlineAnswer:
  1. Choose uu and dvdv: Let's use integration by parts to solve the integral of 3xe4xdx3xe^{-4x}\,dx. Integration by parts is given by the formula udv=uvvdu\int u\, dv = uv - \int v\, du, where uu and dvdv are parts of the integrand that we choose. We will let u=3xu = 3x, which means du=3dxdu = 3\,dx, and dv=e4xdxdv = e^{-4x}\,dx, which means v=14e4xv = -\frac{1}{4} e^{-4x} after integrating dvdv.
  2. Apply integration by parts: Now we apply the integration by parts formula. We have:\newline3xe4xdx=uvvdu\int 3xe^{-4x}\,dx = uv - \int v\,du\newline= (3x)(14e4x)(14e4x)(3dx)(3x)(-\frac{1}{4} e^{-4x}) - \int(-\frac{1}{4} e^{-4x})(3\,dx)
  3. Simplify the integral: Simplify the integral: 3xe4xdx=34xe4x(34e4x)dx\int 3xe^{-4x}dx = -\frac{3}{4} x e^{-4x} - \int(-\frac{3}{4} e^{-4x})dx
  4. Integrate the remaining term: Now we integrate the remaining term 34e4x-\frac{3}{4} e^{-4x} with respect to xx:(34e4x)dx=(34)(14)e4x=316e4x\int\left(-\frac{3}{4} e^{-4x}\right)dx = \left(-\frac{3}{4}\right) * \left(-\frac{1}{4}\right) * e^{-4x} = \frac{3}{16} e^{-4x}
  5. Combine the two parts: Combine the two parts to get the final answer: 3xe4xdx=34xe4x+316e4x+C\int 3xe^{-4x}dx = -\frac{3}{4} x e^{-4x} + \frac{3}{16} e^{-4x} + C, where CC is the constant of integration.