Write Integral: Write down the integral to be evaluated.I=∫3xsin(−x)dx
Factor Out Constant: Use the property of integrals that ∫kf(x)dx=k∫f(x)dx, where k is a constant, to factor out the constant 3.I=3∫xsin(−x)dx
Apply Trig Identity: Apply the trigonometric identity sin(−x)=−sin(x) to simplify the integrand.I=3∫x(−sin(x))dxI=−3∫xsin(x)dx
Integration by Parts: Use integration by parts, where u=x and dv=sin(x)dx. Then we need to find du and v.Let u=x, so du=dx.Let dv=sin(x)dx, so v=−cos(x).
Find du and v: Apply the integration by parts formula ∫udv=uv−∫vdu. I=−3(uv−∫vdu) I=−3(x(−cos(x))−∫(−cos(x))dx) I=−3(−xcos(x)+∫cos(x)dx)
Apply Integration by Parts: Integrate cos(x) with respect to x.∫cos(x)dx=sin(x)
Integrate cos(x): Substitute the integral of cos(x) back into the equation.I=−3(−xcos(x)+sin(x))+C, where C is the constant of integration.
Substitute Integral: Simplify the expression.I=3xcos(x)−3sin(x)+C
More problems from Find indefinite integrals using the substitution and by parts