Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int3x sin(-x)dx
Answer:

Evaluate the integral.\newline3xsin(x)dx \int 3 x \sin (-x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline3xsin(x)dx \int 3 x \sin (-x) d x \newlineAnswer:
  1. Write Integral: Write down the integral to be evaluated.\newlineI=3xsin(x)dxI = \int 3x \sin(-x) \, dx
  2. Factor Out Constant: Use the property of integrals that kf(x)dx=kf(x)dx\int k f(x) \, dx = k \int f(x) \, dx, where kk is a constant, to factor out the constant 33.I=3xsin(x)dxI = 3\int x \sin(-x) \, dx
  3. Apply Trig Identity: Apply the trigonometric identity sin(x)=sin(x)\sin(-x) = -\sin(x) to simplify the integrand.\newlineI=3x(sin(x))dxI = 3\int x (-\sin(x)) \, dx\newlineI=3xsin(x)dxI = -3\int x \sin(x) \, dx
  4. Integration by Parts: Use integration by parts, where u=xu = x and dv=sin(x)dxdv = \sin(x) \, dx. Then we need to find dudu and vv.\newlineLet u=xu = x, so du=dxdu = dx.\newlineLet dv=sin(x)dxdv = \sin(x) \, dx, so v=cos(x)v = -\cos(x).
  5. Find dudu and vv: Apply the integration by parts formula udv=uvvdu\int u\, dv = uv - \int v\, du.
    I=3(uvvdu)I = -3(uv - \int v\, du)
    I=3(x(cos(x))(cos(x))dx)I = -3(x(-\cos(x)) - \int(-\cos(x))\, dx)
    I=3(xcos(x)+cos(x)dx)I = -3(-x \cos(x) + \int\cos(x)\, dx)
  6. Apply Integration by Parts: Integrate cos(x)\cos(x) with respect to xx.cos(x)dx=sin(x)\int\cos(x) \, dx = \sin(x)
  7. Integrate cos(x)\cos(x): Substitute the integral of cos(x)\cos(x) back into the equation.I=3(xcos(x)+sin(x))+CI = -3(-x \cos(x) + \sin(x)) + C, where CC is the constant of integration.
  8. Substitute Integral: Simplify the expression.\newlineI=3xcos(x)3sin(x)+CI = 3x \cos(x) - 3 \sin(x) + C