Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int3x cos(-2x+2)dx
Answer:

Evaluate the integral.\newline3xcos(2x+2)dx \int 3 x \cos (-2 x+2) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline3xcos(2x+2)dx \int 3 x \cos (-2 x+2) d x \newlineAnswer:
  1. Identify Integral: Let's first identify the integral we need to evaluate:\newlineI=3xcos(2x+2)dxI = \int 3x \cos(-2x+2)\,dx\newlineThis is an integration problem that involves a trigonometric function and a polynomial. We can use integration by parts, which is based on the formula udv=uvvdu\int u\, dv = uv - \int v\, du, where uu and dvdv are parts of the integrand that we choose.
  2. Choose uu and dvdv: Choose uu and dvdv for integration by parts. A good choice here is to let u=3xu = 3x (since its derivative is simpler) and dv=cos(2x+2)dxdv = \cos(-2x+2)\,dx (since the integral of the cosine function is straightforward).\newlineSo, we have:\newlineu=3xu = 3x\newlinedu=3dxdu = 3\,dx\newlinedv=cos(2x+2)dxdv = \cos(-2x+2)\,dx\newlinev=cos(2x+2)dxv = \int \cos(-2x+2)\,dx
  3. Find vv: Now we need to find vv by integrating dvdv. To integrate cos(2x+2)\cos(-2x+2), we can use a substitution. Let w=2x+2w = -2x+2, then dw=2dxdw = -2dx. We need to adjust for the 2-2, so we multiply by 12-\frac{1}{2} outside the integral to compensate for the change of variables.\newlinev=cos(2x+2)dxv = \int \cos(-2x+2)dx\newlinev=cos(w)(12)dwv = \int \cos(w)(-\frac{1}{2})dw (after substitution and adjustment)\newlinevv00\newlinevv11\newlineNow we substitute back for vv22 to get vv in terms of vv44.\newlinevv55
  4. Apply Integration by Parts: Now that we have uu, dudu, and vv, we can apply the integration by parts formula:\newlineI=uvvduI = uv - \int v du\newlineI=(3x)(12)sin(2x+2)(12)sin(2x+2)(3dx)I = (3x)(-\frac{1}{2})\sin(-2x+2) - \int(-\frac{1}{2})\sin(-2x+2)(3dx)\newlineI=(32)xsin(2x+2)(32)sin(2x+2)dxI = (-\frac{3}{2})x\sin(-2x+2) - \int(-\frac{3}{2})\sin(-2x+2)dx
  5. Integrate Second Term: Next, we need to integrate the second term. We can use the substitution method again with w=2x+2w = -2x+2, dw=2dxdw = -2dx, and adjust for the 2-2 as before.\newline(32)sin(2x+2)dx=(32)sin(w)(12)dw\int(-\frac{3}{2})\sin(-2x+2)dx = (-\frac{3}{2})\int\sin(w)(-\frac{1}{2})dw\newline=(34)sin(w)dw= (\frac{3}{4})\int\sin(w)dw\newline=(34)(cos(w))= (\frac{3}{4})(-\cos(w))\newlineSubstitute back for ww to get the integral in terms of xx.\newline=(34)(cos(2x+2))= (\frac{3}{4})(-\cos(-2x+2))\newline=(34)cos(2x+2)= -(\frac{3}{4})\cos(-2x+2)
  6. Combine Results: Combine the results from the integration by parts formula:\newlineI=(32)xsin(2x+2)(34)cos(2x+2)+CI = \left(-\frac{3}{2}\right)x\sin\left(-2x+2\right) - \left(-\frac{3}{4}\right)\cos\left(-2x+2\right) + C\newlineSimplify the expression:\newlineI=(32)xsin(2x+2)+34cos(2x+2)+CI = \left(-\frac{3}{2}\right)x\sin\left(-2x+2\right) + \frac{3}{4}\cos\left(-2x+2\right) + C