Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int2x sin(-4x)dx
Answer:

Evaluate the integral.\newline2xsin(4x)dx \int 2 x \sin (-4 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2xsin(4x)dx \int 2 x \sin (-4 x) d x \newlineAnswer:
  1. Set Up Integral: Let's start by setting up the integral that we need to evaluate:\newlineI=2xsin(4x)dxI = \int 2x \sin(-4x) \, dx\newlineThis is a product of two functions, so we will use integration by parts, which states that udv=uvvdu\int u \, dv = uv - \int v \, du.\newlineWe need to choose uu and dvdv such that the resulting integral is simpler to solve. Let's choose u=2xu = 2x and dv=sin(4x)dxdv = \sin(-4x) \, dx.
  2. Choose uu and dvdv: Now we need to find dudu and vv.\newlineTo find dudu, we differentiate uu with respect to xx:\newlineu=2xu = 2x\newlinedu=d(2x)/dx=2dxdu = d(2x)/dx = 2 dx\newlineTo find vv, we integrate dvdv with respect to xx:\newlinedvdv22\newlinedvdv33\newlineTo integrate dvdv44, we use the substitution method. Let dvdv55, then dvdv66, or dvdv77.\newlinedvdv88\newlineNow we substitute back dvdv55:\newlinedudu00 (since cosine is an even function)
  3. Find dudu and vv: Now we apply the integration by parts formula:\newlineI=uvvduI = uv - \int v du\newlineI=(2x)(14cos(4x))(14cos(4x))(2dx)I = (2x)(\frac{1}{4} \cos(4x)) - \int(\frac{1}{4} \cos(4x))(2 dx)\newlineI = (\frac{\(1\)}{\(2\)})x \cos(\(4\)x) - (\frac{\(1\)}{\(2\)})\int\cos(\(4\)x) dx
  4. Apply Integration by Parts: Next, we need to integrate \(\cos(4x)\) with respect to \(x\). Let's use the substitution method again. Let \(z = 4x\), then \(dz = 4 dx\), or \(dx = dz/4\). \(\int \cos(4x) dx = \int \cos(z) \cdot (dz/4) = \frac{1}{4} \int \cos(z) dz = \frac{1}{4} \sin(z)\) Now we substitute back \(z = 4x\): \(\int \cos(4x) dx = \frac{1}{4} \sin(4x)\)
  5. Integrate \(\cos(4x)\): Now we can substitute this result back into our integral: \(I = \frac{1}{2}x \cos(4x) - \frac{1}{2}\left(\frac{1}{4} \sin(4x)\right)\) \(I = \frac{1}{2}x \cos(4x) - \frac{1}{8}\sin(4x)\)
  6. Substitute Result: Finally, we add the constant of integration \(C\) to our result:\(\newline\)I = \left(\frac{11}{22}\right)x \cos(44x) - \left(\frac{11}{88}\right)\sin(44x) + C