Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int2x^(2)ln(-3x)dx
Answer:

Evaluate the integral.\newline2x2ln(3x)dx \int 2 x^{2} \ln (-3 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2x2ln(3x)dx \int 2 x^{2} \ln (-3 x) d x \newlineAnswer:
  1. Define u and dv: Let's use integration by parts to solve the integral 2x2ln(3x)dx \int 2x^2 \ln(-3x) \, dx . We can let u=ln(3x) u = \ln(-3x) and dv=2x2dx dv = 2x^2 \, dx . Then we need to find du du and v v .
  2. Find du: To find du du , we differentiate u u with respect to x x : du=ddxln(3x)dx=13x3dx=33xdx=1xdx du = \frac{d}{dx} \ln(-3x) \, dx = \frac{1}{-3x} \cdot -3 \, dx = \frac{-3}{-3x} \, dx = \frac{1}{x} \, dx .
  3. Find v: To find v v , we integrate dv dv : v=2x2dx=23x3 v = \int 2x^2 \, dx = \frac{2}{3}x^3 .
  4. Apply integration by parts formula: Now we apply the integration by parts formula udv=uvvdu \int u \, dv = uv - \int v \, du : 2x2ln(3x)dx=uvvdu \int 2x^2 \ln(-3x) \, dx = uv - \int v \, du .
  5. Substitute into formula: Substitute u u , v v , du du , and dv dv into the integration by parts formula: 2x2ln(3x)dx=ln(3x)23x323x31xdx \int 2x^2 \ln(-3x) \, dx = \ln(-3x) \cdot \frac{2}{3}x^3 - \int \frac{2}{3}x^3 \cdot \frac{1}{x} \, dx .
  6. Simplify the integral: Simplify the integral: 2x2ln(3x)dx=23x3ln(3x)23x2dx \int 2x^2 \ln(-3x) \, dx = \frac{2}{3}x^3 \ln(-3x) - \int \frac{2}{3}x^2 \, dx .
  7. Integrate v: Integrate 23x2 \frac{2}{3}x^2 with respect to x x : 23x2dx=23x33=29x3 \int \frac{2}{3}x^2 \, dx = \frac{2}{3} \cdot \frac{x^3}{3} = \frac{2}{9}x^3 .
  8. Combine terms for final answer: Combine the terms to get the final answer: 2x2ln(3x)dx=23x3ln(3x)29x3+C \int 2x^2 \ln(-3x) \, dx = \frac{2}{3}x^3 \ln(-3x) - \frac{2}{9}x^3 + C , where C C is the constant of integration.