Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Evaluate the integral.
\newline
∫
2
x
2
ln
(
−
3
x
)
d
x
\int 2 x^{2} \ln (-3 x) d x
∫
2
x
2
ln
(
−
3
x
)
d
x
\newline
Answer:
View step-by-step help
Home
Math Problems
Calculus
Find indefinite integrals using the substitution and by parts
Full solution
Q.
Evaluate the integral.
\newline
∫
2
x
2
ln
(
−
3
x
)
d
x
\int 2 x^{2} \ln (-3 x) d x
∫
2
x
2
ln
(
−
3
x
)
d
x
\newline
Answer:
Define u and dv:
Let's use integration by parts to solve the integral
∫
2
x
2
ln
(
−
3
x
)
d
x
\int 2x^2 \ln(-3x) \, dx
∫
2
x
2
ln
(
−
3
x
)
d
x
. We can let
u
=
ln
(
−
3
x
)
u = \ln(-3x)
u
=
ln
(
−
3
x
)
and
d
v
=
2
x
2
d
x
dv = 2x^2 \, dx
d
v
=
2
x
2
d
x
. Then we need to find
d
u
du
d
u
and
v
v
v
.
Find du:
To find
d
u
du
d
u
, we differentiate
u
u
u
with respect to
x
x
x
:
d
u
=
d
d
x
ln
(
−
3
x
)
d
x
=
1
−
3
x
⋅
−
3
d
x
=
−
3
−
3
x
d
x
=
1
x
d
x
du = \frac{d}{dx} \ln(-3x) \, dx = \frac{1}{-3x} \cdot -3 \, dx = \frac{-3}{-3x} \, dx = \frac{1}{x} \, dx
d
u
=
d
x
d
ln
(
−
3
x
)
d
x
=
−
3
x
1
⋅
−
3
d
x
=
−
3
x
−
3
d
x
=
x
1
d
x
.
Find v:
To find
v
v
v
, we integrate
d
v
dv
d
v
:
v
=
∫
2
x
2
d
x
=
2
3
x
3
v = \int 2x^2 \, dx = \frac{2}{3}x^3
v
=
∫
2
x
2
d
x
=
3
2
x
3
.
Apply integration by parts formula:
Now we apply the integration by parts formula
∫
u
d
v
=
u
v
−
∫
v
d
u
\int u \, dv = uv - \int v \, du
∫
u
d
v
=
uv
−
∫
v
d
u
:
∫
2
x
2
ln
(
−
3
x
)
d
x
=
u
v
−
∫
v
d
u
\int 2x^2 \ln(-3x) \, dx = uv - \int v \, du
∫
2
x
2
ln
(
−
3
x
)
d
x
=
uv
−
∫
v
d
u
.
Substitute into formula:
Substitute
u
u
u
,
v
v
v
,
d
u
du
d
u
, and
d
v
dv
d
v
into the integration by parts formula:
∫
2
x
2
ln
(
−
3
x
)
d
x
=
ln
(
−
3
x
)
⋅
2
3
x
3
−
∫
2
3
x
3
⋅
1
x
d
x
\int 2x^2 \ln(-3x) \, dx = \ln(-3x) \cdot \frac{2}{3}x^3 - \int \frac{2}{3}x^3 \cdot \frac{1}{x} \, dx
∫
2
x
2
ln
(
−
3
x
)
d
x
=
ln
(
−
3
x
)
⋅
3
2
x
3
−
∫
3
2
x
3
⋅
x
1
d
x
.
Simplify the integral:
Simplify the integral:
∫
2
x
2
ln
(
−
3
x
)
d
x
=
2
3
x
3
ln
(
−
3
x
)
−
∫
2
3
x
2
d
x
\int 2x^2 \ln(-3x) \, dx = \frac{2}{3}x^3 \ln(-3x) - \int \frac{2}{3}x^2 \, dx
∫
2
x
2
ln
(
−
3
x
)
d
x
=
3
2
x
3
ln
(
−
3
x
)
−
∫
3
2
x
2
d
x
.
Integrate v:
Integrate
2
3
x
2
\frac{2}{3}x^2
3
2
x
2
with respect to
x
x
x
:
∫
2
3
x
2
d
x
=
2
3
⋅
x
3
3
=
2
9
x
3
\int \frac{2}{3}x^2 \, dx = \frac{2}{3} \cdot \frac{x^3}{3} = \frac{2}{9}x^3
∫
3
2
x
2
d
x
=
3
2
⋅
3
x
3
=
9
2
x
3
.
Combine terms for final answer:
Combine the terms to get the final answer:
∫
2
x
2
ln
(
−
3
x
)
d
x
=
2
3
x
3
ln
(
−
3
x
)
−
2
9
x
3
+
C
\int 2x^2 \ln(-3x) \, dx = \frac{2}{3}x^3 \ln(-3x) - \frac{2}{9}x^3 + C
∫
2
x
2
ln
(
−
3
x
)
d
x
=
3
2
x
3
ln
(
−
3
x
)
−
9
2
x
3
+
C
, where
C
C
C
is the constant of integration.
More problems from Find indefinite integrals using the substitution and by parts
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant