Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int2x^(2)e^(-x)dx
Answer:

Evaluate the integral.\newline2x2exdx \int 2 x^{2} e^{-x} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2x2exdx \int 2 x^{2} e^{-x} d x \newlineAnswer:
  1. Choose uu and dvdv: Let's use integration by parts to solve the integral of 2x2ex2x^2e^{-x} with respect to xx. Integration by parts is given by the formula udv=uvvdu\int u dv = uv - \int v du, where uu and dvdv are parts of the integrand that we choose. We will let u=x2u = x^2 and dv=2exdxdv = 2e^{-x}dx. Then we need to find dudu and dvdv00.\newlineFirst, we calculate dudu by differentiating uu with respect to xx:\newlinedvdv44.\newlineNext, we find dvdv00 by integrating dvdv:\newlinedvdv77.\newlineTo integrate dvdv00, we use the fact that the integral of dvdv99 is 2x2ex2x^2e^{-x}00, so:\newline2x2ex2x^2e^{-x}11.
  2. Apply integration by parts: Now that we have uu, dudu, vv, and dvdv, we can apply the integration by parts formula:\newline2x2e(x)dx=uvvdu\int 2x^2e^{(-x)}dx = uv - \int v du\newline=x2(2e(x))(2e(x))(2x)dx= x^2(-2e^{(-x)}) - \int(-2e^{(-x)})(2x)dx\newline=2x2e(x)(4xe(x))dx.= -2x^2e^{(-x)} - \int(-4xe^{(-x)})dx.\newlineWe now have a new integral to solve, which is (4xe(x))dx\int(-4xe^{(-x)})dx. We will use integration by parts again for this new integral.
  3. New integral to solve: For the new integral (4xex)dx\int(-4xe^{-x})dx, we will let u=4xu = -4x and dv=exdxdv = e^{-x}dx. Then we need to find dudu and vv.\newlineFirst, we calculate dudu by differentiating uu with respect to xx:\newlinedu=d(4x)/dx=4dxdu = d(-4x)/dx = -4dx.\newlineNext, we find vv by integrating u=4xu = -4x00:\newlineu=4xu = -4x11.\newlineTo integrate vv, we use the fact that the integral of u=4xu = -4x33 is u=4xu = -4x44, so:\newlineu=4xu = -4x55.
  4. Apply integration by parts again: Now we apply the integration by parts formula to the new integral: \newline(4xex)dx=uvvdu\int(-4xe^{-x})dx = uv - \int v du\newline= (4x)(ex)(ex)(4)dx(-4x)(-e^{-x}) - \int(-e^{-x})(-4)dx\newline= 4xex4exdx4xe^{-x} - \int 4e^{-x}dx.\newlineThe remaining integral 4exdx\int 4e^{-x}dx is straightforward to solve, as it is a constant multiple of the integral of exe^{-x}, which is ex-e^{-x}.
  5. Solve remaining integral: We integrate 4exdx\int 4e^{-x}\,dx: \newline4exdx=4exdx\int 4e^{-x}\,dx = 4\int e^{-x}\,dx\newline=4(ex)= 4(-e^{-x})\newline=4ex.= -4e^{-x}.\newlineNow we can combine all the parts we have integrated:\newline2x2ex(4xex(4ex)).-2x^2e^{-x} - (4xe^{-x} - (-4e^{-x})).
  6. Combine integrated parts: Simplify the expression by distributing the negative sign and combining like terms: \newline2x2ex4xex+4ex-2x^2e^{-x} - 4xe^{-x} + 4e^{-x}.\newlineThis is the antiderivative of the original integral. We also need to add the constant of integration, which we will denote as CC.
  7. Simplify expression: The final answer for the integral is: 2x2exdx=2x2ex4xex+4ex+C\int 2x^2e^{-x}\,dx = -2x^2e^{-x} - 4xe^{-x} + 4e^{-x} + C.