Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int2x^(2)4^(-2x)dx
Answer:

Evaluate the integral.\newline2x242xdx \int 2 x^{2} 4^{-2 x} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2x242xdx \int 2 x^{2} 4^{-2 x} d x \newlineAnswer:
  1. Denote Integral: Let's denote the integral by II:I=2x242xdxI = \int 2x^2 \cdot 4^{-2x} \, dxTo solve this integral, we will use integration by parts, which states that udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are differentiable functions of xx. We need to choose uu and dvdv such that the resulting integral is simpler to solve. Let's choose:u=x2u = x^2 (which implies du=2xdxdu = 2x \, dx)dv=242xdxdv = 2 \cdot 4^{-2x} \, dx (which implies v=242xdxv = \int 2 \cdot 4^{-2x} \, dx) Now we need to find vv by integrating dvdv.
  2. Integration by Parts: To find vv, we integrate dvdv:
    v=242xdxv = \int 2 \cdot 4^{-2x} \, dx
    We can rewrite 42x4^{-2x} as (22)2x=24x(2^2)^{-2x} = 2^{-4x}.
    Now, v=224xdxv = \int 2 \cdot 2^{-4x} \, dx
    To integrate this, we use the fact that akxdx=(1kln(a))akx\int a^{kx} \, dx = (\frac{1}{k} \cdot \ln(a)) \cdot a^{kx}, where a > 0, a1a \neq 1, and kk is a constant.
    dvdv00
    dvdv11
    Now we have vv, we can proceed to apply the integration by parts formula.
  3. Find vv: Applying integration by parts:\newlineI=uvvduI = uv - \int v du\newlineI=x2(1/(2ln(2))24x)(1/(2ln(2))24x)2xdxI = x^2 * (-1/(2\ln(2)) * 2^{-4x}) - \int(-1/(2\ln(2)) * 2^{-4x}) * 2x dx\newlineSimplify the expression:\newlineI=x22ln(2)24x+1ln(2)x24xdxI = -\frac{x^2}{2\ln(2)} * 2^{-4x} + \frac{1}{\ln(2)} \int x * 2^{-4x} dx\newlineNow we need to integrate the remaining integral, which again requires integration by parts.
  4. Apply Integration by Parts: We need to integrate x24xdx\int x \cdot 2^{-4x} \, dx by parts again. Let's choose new uu and dvdv:
    u=xu = x (which implies du=dxdu = dx)
    dv=24xdxdv = 2^{-4x} \, dx (which implies v=24xdxv = \int 2^{-4x} \, dx)
    We already found the integral of 24xdx2^{-4x} \, dx in a previous step, so:
    v=14ln(2)24xv = -\frac{1}{4\ln(2)} \cdot 2^{-4x}
    Now we apply integration by parts again.
  5. Integrate Again: Applying integration by parts to the new integral:\newlinex24xdx=uvvdu\int x \cdot 2^{-4x} \, dx = uv - \int v \, du\newline= x(12ln(2)24x)(12ln(2)24x)dxx \cdot \left(-\frac{1}{2\ln(2)} \cdot 2^{-4x}\right) - \int\left(-\frac{1}{2\ln(2)} \cdot 2^{-4x}\right) \, dx\newlineSimplify the expression:\newline= x2ln(2)24x+12ln(2)24xdx-\frac{x}{2\ln(2)} \cdot 2^{-4x} + \frac{1}{2\ln(2)} \int 2^{-4x} \, dx\newlineWe already know the integral of 24xdx2^{-4x} \, dx, so we can write it down directly:\newline= x2ln(2)24x+12ln(2)(14ln(2))24x-\frac{x}{2\ln(2)} \cdot 2^{-4x} + \frac{1}{2\ln(2)} \cdot \left(-\frac{1}{4\ln(2)}\right) \cdot 2^{-4x}\newline= x2ln(2)24x18(ln(2))224x-\frac{x}{2\ln(2)} \cdot 2^{-4x} - \frac{1}{8(\ln(2))^2} \cdot 2^{-4x}\newlineNow we can substitute this result back into our original integration by parts formula.
  6. Apply Integration Again: Substituting the result back into the original integration by parts formula:\newlineI=x22ln(2)24x+1ln(2)(x2ln(2)24x18(ln(2))224x)I = -\frac{x^2}{2\ln(2)} \cdot 2^{-4x} + \frac{1}{\ln(2)} \cdot \left(-\frac{x}{2\ln(2)} \cdot 2^{-4x} - \frac{1}{8(\ln(2))^2} \cdot 2^{-4x}\right)\newlineCombine like terms:\newlineI=x22ln(2)24xx2(ln(2))224x18(ln(2))324x+CI = -\frac{x^2}{2\ln(2)} \cdot 2^{-4x} - \frac{x}{2(\ln(2))^2} \cdot 2^{-4x} - \frac{1}{8(\ln(2))^3} \cdot 2^{-4x} + C\newlineThis is the final result of the integral, where CC is the constant of integration.