Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-xe^(-x+4)dx
Answer:

Evaluate the integral.\newlinexex+4dx \int-x e^{-x+4} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newlinexex+4dx \int-x e^{-x+4} d x \newlineAnswer:
  1. Recognize problem type: Recognize the integral as an integration by parts problem. Integration by parts formula is udv=uvvdu\int u \, dv = uv - \int v \, du. Let u=xu = -x and dv=e(x+4)dxdv = e^{(-x+4)}dx.
  2. Define uu and dvdv: Differentiate uu and integrate dvdv.
    du=dxdu = -dx and v=e(x+4)dxv = \int e^{(-x+4)}dx.
    To integrate dvdv, we need to find the antiderivative of e(x+4)e^{(-x+4)}.
  3. Differentiate and integrate: Calculate the antiderivative of e(x+4)e^{(-x+4)}.\newlinev=e(x+4)dx=e(x+4)(1)=e(x+4)v = \int e^{(-x+4)}\,dx = e^{(-x+4)} \cdot (-1) = -e^{(-x+4)}.
  4. Calculate antiderivative: Apply the integration by parts formula.\newlineudv=uvvdu\int u \, dv = uv - \int v \, du.\newlineSubstitute uu, dudu, and vv into the formula.
  5. Apply integration by parts: Perform the substitution and simplify. xe(x+4)dx=x(e(x+4))(e(x+4))(dx)\int -xe^{(-x+4)}dx = -x(-e^{(-x+4)}) - \int(-e^{(-x+4)})(-dx). Simplify the expression.
  6. Perform substitution: Simplify the expression further.\newlinexe(x+4)dx=xe(x+4)e(x+4)dx.\int -xe^{(-x+4)}dx = xe^{(-x+4)} - \int e^{(-x+4)}dx.\newlineNow we need to integrate e(x+4)e^{(-x+4)} with respect to xx.
  7. Simplify expression: Integrate e(x+4)e^{(-x+4)} with respect to xx.e(x+4)dx=e(x+4)×(1)=e(x+4).\int e^{(-x+4)}dx = e^{(-x+4)} \times (-1) = -e^{(-x+4)}.
  8. Integrate e(x+4)e^{(-x+4)}: Substitute the integral back into the expression.xe(x+4)e(x+4)dx=xe(x+4)(e(x+4)).xe^{(-x+4)} - \int e^{(-x+4)}dx = xe^{(-x+4)} - (-e^{(-x+4)}).
  9. Substitute integral back: Simplify the final expression and add the constant of integration. \newlinexe(x+4)+e(x+4)+Cxe^{(-x+4)} + e^{(-x+4)} + C.
  10. Simplify final expression: Write the final answer.\newlineThe integral of xe(x+4)-xe^{(-x+4)} with respect to xx is xe(x+4)+e(x+4)+Cxe^{(-x+4)} + e^{(-x+4)} + C.