Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-x ln(-2x)dx
Answer:

Evaluate the integral.\newlinexln(2x)dx \int-x \ln (-2 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newlinexln(2x)dx \int-x \ln (-2 x) d x \newlineAnswer:
  1. Identify integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function xln(2x)-x \ln(-2x) with respect to xx.\newlineI=xln(2x)dxI = \int -x \ln(-2x) \, dx
  2. Use integration by parts: Use integration by parts.\newlineIntegration by parts formula is udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are parts of the integrand.\newlineLet u=ln(2x)u = \ln(-2x) and dv=xdxdv = -x \, dx. Then we need to find dudu and vv.
  3. Differentiate and integrate: Differentiate uu and integrate dvdv. Differentiating uu with respect to xx gives us du=(1/x)dxdu = (1/x) dx. Integrating dvdv with respect to xx gives us v=x2/2v = -x^2/2.
  4. Apply integration by parts: Apply the integration by parts formula.\newlineNow we can apply the integration by parts formula:\newlineI=uvvduI = uv - \int v \, du\newlineI=ln(2x)(x22)(x22)(1x)dxI = \ln(-2x) \cdot \left(-\frac{x^2}{2}\right) - \int \left(-\frac{x^2}{2}\right) \cdot \left(\frac{1}{x}\right) dx
  5. Simplify integral: Simplify the integral.\newlineSimplify the integral by canceling xx in the second term:\newlineI=x22ln(2x)(x2)dxI = -\frac{x^2}{2} \cdot \ln(-2x) - \int \left(-\frac{x}{2}\right) dx
  6. Integrate remaining term: Integrate the remaining term.\newlineThe integral of x2-\frac{x}{2} with respect to xx is x24-\frac{x^2}{4}.\newlineI=x22ln(2x)+x24+CI = -\frac{x^2}{2} \cdot \ln(-2x) + \frac{x^2}{4} + C, where CC is the constant of integration.
  7. Combine and write final answer: Combine the terms and write the final answer.\newlineThe final answer is:\newlineI=x22ln(2x)+x24+CI = -\frac{x^2}{2} \cdot \ln(-2x) + \frac{x^2}{4} + C