Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-x^(2)e^(2x)dx
Answer:

Evaluate the integral.\newlinex2e2xdx \int-x^{2} e^{2 x} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newlinex2e2xdx \int-x^{2} e^{2 x} d x \newlineAnswer:
  1. Integration by Parts: We will use integration by parts to evaluate the integral of x2e2x-x^{2}e^{2x} with respect to xx. Integration by parts is given by the formula udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are parts of the integrand that we choose. We will let u=x2u = -x^2 (which means du=2xdxdu = -2x \, dx) and dv=e2xdxdv = e^{2x} \, dx (which means v=(1/2)e2xv = (1/2)e^{2x}). Now we will calculate dudu and xx00.
  2. Calculate uu and vv: First, we calculate dudu by differentiating u=x2u = -x^2. The derivative of x2-x^2 with respect to xx is 2x-2x, so du=2xdxdu = -2x dx.
  3. Apply Integration by Parts: Next, we find vv by integrating dv=e2xdxdv = e^{2x} dx. The integral of e2xe^{2x} with respect to xx is (1/2)e2x(1/2)e^{2x}, so v=(1/2)e2xv = (1/2)e^{2x}.
  4. Simplify the Expression: Now we apply the integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du. Substituting the values of uu, vv, and dudu, we get:\newlinex2e2xdx=(x2)(12)e2x(12)e2x(2x)dx\int -x^2 e^{2x} \, dx = (-x^2)(\frac{1}{2})e^{2x} - \int (\frac{1}{2})e^{2x}(-2x) \, dx.
  5. Integrate by Parts Again: Simplify the expression: x2e2xdx=(12)x2e2xxe2xdx\int -x^2 e^{2x} dx = \left(-\frac{1}{2}\right)x^2 e^{2x} - \int -x e^{2x} dx.
  6. Calculate dudu and vv: We need to integrate xe2xdx-x e^{2x} dx again by parts. Let u=xu = -x (which means du=dxdu = -dx) and dv=e2xdxdv = e^{2x} dx (which means v=(1/2)e2xv = (1/2)e^{2x}). We calculate dudu and vv again.
  7. Apply Integration by Parts Again: Calculate dudu by differentiating u=xu = -x. The derivative of x-x with respect to xx is 1-1, so du=dxdu = -dx.
  8. Simplify the Expression: Find vv by integrating dv=e2xdxdv = e^{2x} dx again. As before, the integral of e2xe^{2x} with respect to xx is (12)e2x(\frac{1}{2})e^{2x}, so v=(12)e2xv = (\frac{1}{2})e^{2x}.
  9. Integrate (12)e(2x)dx(\frac{1}{2})e^{(2x)} dx: Apply the integration by parts formula again: udv=uvvdu\int u dv = uv - \int v du. Substituting the new values of uu, vv, and dudu, we get: xe(2x)dx=(x)(12)e(2x)(12)e(2x)(1)dx\int -x e^{(2x)} dx = (-x)(\frac{1}{2})e^{(2x)} - \int (\frac{1}{2})e^{(2x)}(-1) dx.
  10. Combine All Parts: Simplify the expression:\newlinexe2xdx=(12)xe2x+(12)e2xdx.\int -x e^{2x} dx = \left(-\frac{1}{2}\right)x e^{2x} + \left(\frac{1}{2}\right)\int e^{2x} dx.
  11. Final Answer: Now we integrate (12)e(2x)dx(\frac{1}{2})e^{(2x)} \, dx. The integral of e(2x)e^{(2x)} with respect to xx is (12)e(2x)(\frac{1}{2})e^{(2x)}, so we get:\newline(12)e(2x)dx=(12)(12)e(2x)=(14)e(2x)(\frac{1}{2})\int e^{(2x)} \, dx = (\frac{1}{2})(\frac{1}{2})e^{(2x)} = (\frac{1}{4})e^{(2x)}.
  12. Final Answer: Now we integrate (12)e(2x)dx(\frac{1}{2})e^{(2x)} dx. The integral of e(2x)e^{(2x)} with respect to xx is (12)e(2x)(\frac{1}{2})e^{(2x)}, so we get:\newline(12)e(2x)dx=(12)(12)e(2x)=(14)e(2x)(\frac{1}{2})\int e^{(2x)} dx = (\frac{1}{2})(\frac{1}{2})e^{(2x)} = (\frac{1}{4})e^{(2x)}.Combine all the parts together to get the final answer:\newlinex2e(2x)dx=(12)x2e(2x)((12)xe(2x)+(14)e(2x))+C\int-x^2 e^{(2x)} dx = (-\frac{1}{2})x^2 e^{(2x)} - ((-\frac{1}{2})x e^{(2x)} + (\frac{1}{4})e^{(2x)}) + C, where CC is the constant of integration.
  13. Final Answer: Now we integrate (1/2)e(2x)dx(1/2)e^{(2x)} \, dx. The integral of e(2x)e^{(2x)} with respect to xx is (1/2)e(2x)(1/2)e^{(2x)}, so we get:\newline(1/2)e(2x)dx=(1/2)(1/2)e(2x)=(1/4)e(2x)(1/2)\int e^{(2x)} \, dx = (1/2)(1/2)e^{(2x)} = (1/4)e^{(2x)}.Combine all the parts together to get the final answer:\newlinex2e(2x)dx=(1/2)x2e(2x)((1/2)xe(2x)+(1/4)e(2x))+C\int -x^2 e^{(2x)} \, dx = (-1/2)x^2 e^{(2x)} - ((-1/2)x e^{(2x)} + (1/4)e^{(2x)}) + C, where CC is the constant of integration.Simplify the expression to get the final answer:\newlinex2e(2x)dx=(1/2)x2e(2x)+(1/2)xe(2x)(1/4)e(2x)+C\int -x^2 e^{(2x)} \, dx = (-1/2)x^2 e^{(2x)} + (1/2)x e^{(2x)} - (1/4)e^{(2x)} + C.