Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(x-1)(4x-5)dx
Answer:

Evaluate the integral.\newline(x1)(4x5)dx \int(x-1)(4 x-5) \mathrm{d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(x1)(4x5)dx \int(x-1)(4 x-5) \mathrm{d} x \newlineAnswer:
  1. Expand Binomials: Expand the integrand (x1)(4x5)(x-1)(4x-5). To integrate the product of two binomials, we first need to expand the expression. (x1)(4x5)=4x25x4x+5=4x29x+5(x-1)(4x-5) = 4x^2 - 5x - 4x + 5 = 4x^2 - 9x + 5
  2. Write Integral: Write the integral with the expanded integrand.\newlineNow we can write the integral as:\newline(4x29x+5)dx\int(4x^2 - 9x + 5)\,dx
  3. Integrate Separately: Integrate each term separately.\newlineThe integral of a sum is the sum of the integrals, so we can integrate each term separately.\newline4x2dx9xdx+5dx\int 4x^2 \, dx - \int 9x \, dx + \int 5 \, dx
  4. Apply Power Rule: Apply the power rule for integration to each term.\newlineThe power rule states that xndx=x(n+1)n+1+C\int x^n \, dx = \frac{x^{(n+1)}}{n+1} + C, where CC is the constant of integration.\newline4x2dx=4x(2+1)2+1=43x3\int 4x^2\,dx = 4 \cdot \frac{x^{(2+1)}}{2+1} = \frac{4}{3}x^3\newline9xdx=9x(1+1)1+1=92x2\int 9x\,dx = 9 \cdot \frac{x^{(1+1)}}{1+1} = \frac{9}{2}x^2\newline5dx=5x\int 5\,dx = 5x
  5. Combine Integrated Terms: Combine the integrated terms and add the constant of integration.\newlineNow we combine all the integrated terms and add the constant of integration CC.\newline43x392x2+5x+C\frac{4}{3}x^3 - \frac{9}{2}x^2 + 5x + C