Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.\newlinelog9xxdx\int \frac{\log_{9}x}{x}dx

Full solution

Q. Evaluate the integral.\newlinelog9xxdx\int \frac{\log_{9}x}{x}dx
  1. Convert to Natural Logarithm: Let's use the change of base formula for logarithms to convert log9(x)\log_{9}(x) to a natural logarithm (ln\ln), which is more convenient for integration.\newlinelog9(x)=ln(x)ln(9)\log_{9}(x) = \frac{\ln(x)}{\ln(9)}\newlineNow, rewrite the integral using this conversion.\newline(log9(x)x)dx=(ln(x)xln(9))dx\int\left(\frac{\log_{9}(x)}{x}\right)dx = \int\left(\frac{\ln(x)}{x\cdot\ln(9)}\right)dx
  2. Factor Out Constant: Since ln(9)\ln(9) is a constant, we can factor it out of the integral.(ln(x)xln(9))dx=(1ln(9))(ln(x)x)dx\int\left(\frac{\ln(x)}{x\cdot\ln(9)}\right)dx = \left(\frac{1}{\ln(9)}\right)\int\left(\frac{\ln(x)}{x}\right)dx
  3. Integrate with Respect to x: Now, we recognize that the integral (ln(x)/x)dx\int(\ln(x)/x)\,dx is a standard integral that equals (ln(x))2/2(\ln(x))^2/2. So, we integrate (ln(x)/x)(\ln(x)/x) with respect to xx. (1/ln(9))(ln(x)/x)dx=(1/ln(9))(ln(x))2/2+C(1/\ln(9))\int(\ln(x)/x)\,dx = (1/\ln(9)) \cdot (\ln(x))^2/2 + C
  4. Final Answer: We have found the indefinite integral.\newlineThe final answer is (ln(x))22ln(9)+C\frac{(\ln(x))^2}{2\cdot\ln(9)} + C.