Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(9x^(3)-2x^(2)-4x)/(x)dx
Answer:

Evaluate the integral.\newline9x32x24xx dx \int \frac{9 x^{3}-2 x^{2}-4 x}{x} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline9x32x24xx dx \int \frac{9 x^{3}-2 x^{2}-4 x}{x} \mathrm{~d} x \newlineAnswer:
  1. Simplify Integrand: Simplify the integrand by dividing each term by xx.9x32x24xx=9x22x4\frac{9x^3 - 2x^2 - 4x}{x} = 9x^2 - 2x - 4
  2. Integrate Terms Separately: Integrate each term separately. \int(\(9x^22 - 22x - 44)\,dx = \int 99x^22\,dx - \int 22x\,dx - \int 44\,dx
  3. Apply Power Rule: Apply the power rule for integration to each term.\newline9x2dx=9×(x2+12+1)=9×(x33)\int 9x^2\,dx = 9 \times \left(\frac{x^{2+1}}{2+1}\right) = 9 \times \left(\frac{x^3}{3}\right)\newline2xdx=2×(x1+11+1)=2×(x22)\int 2x\,dx = 2 \times \left(\frac{x^{1+1}}{1+1}\right) = 2 \times \left(\frac{x^2}{2}\right)\newline4dx=4x\int 4\,dx = 4x
  4. Simplify Integrations: Simplify the results of the integrations.\newline9×(x33)=3x39 \times \left(\frac{x^3}{3}\right) = 3x^3\newline2×(x22)=x22 \times \left(\frac{x^2}{2}\right) = x^2\newline4x=4x4x = 4x
  5. Combine Results: Combine the results and add the constant of integration CC. 3x3x24x+C3x^3 - x^2 - 4x + C