Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Evaluate the integral.
\newline
∫
9
x
3
−
2
x
2
−
4
x
x
d
x
\int \frac{9 x^{3}-2 x^{2}-4 x}{x} \mathrm{~d} x
∫
x
9
x
3
−
2
x
2
−
4
x
d
x
\newline
Answer:
View step-by-step help
Home
Math Problems
Calculus
Find indefinite integrals using the substitution
Full solution
Q.
Evaluate the integral.
\newline
∫
9
x
3
−
2
x
2
−
4
x
x
d
x
\int \frac{9 x^{3}-2 x^{2}-4 x}{x} \mathrm{~d} x
∫
x
9
x
3
−
2
x
2
−
4
x
d
x
\newline
Answer:
Simplify Integrand:
Simplify the integrand by dividing each term by
x
x
x
.
9
x
3
−
2
x
2
−
4
x
x
=
9
x
2
−
2
x
−
4
\frac{9x^3 - 2x^2 - 4x}{x} = 9x^2 - 2x - 4
x
9
x
3
−
2
x
2
−
4
x
=
9
x
2
−
2
x
−
4
Integrate Terms Separately:
Integrate each term separately. \int(\(9x^
2
2
2
-
2
2
2
x -
4
4
4
)\,dx = \int
9
9
9
x^
2
2
2
\,dx - \int
2
2
2
x\,dx - \int
4
4
4
\,dx
Apply Power Rule:
Apply the power rule for integration to each term.
\newline
∫
9
x
2
d
x
=
9
×
(
x
2
+
1
2
+
1
)
=
9
×
(
x
3
3
)
\int 9x^2\,dx = 9 \times \left(\frac{x^{2+1}}{2+1}\right) = 9 \times \left(\frac{x^3}{3}\right)
∫
9
x
2
d
x
=
9
×
(
2
+
1
x
2
+
1
)
=
9
×
(
3
x
3
)
\newline
∫
2
x
d
x
=
2
×
(
x
1
+
1
1
+
1
)
=
2
×
(
x
2
2
)
\int 2x\,dx = 2 \times \left(\frac{x^{1+1}}{1+1}\right) = 2 \times \left(\frac{x^2}{2}\right)
∫
2
x
d
x
=
2
×
(
1
+
1
x
1
+
1
)
=
2
×
(
2
x
2
)
\newline
∫
4
d
x
=
4
x
\int 4\,dx = 4x
∫
4
d
x
=
4
x
Simplify Integrations:
Simplify the results of the integrations.
\newline
9
×
(
x
3
3
)
=
3
x
3
9 \times \left(\frac{x^3}{3}\right) = 3x^3
9
×
(
3
x
3
)
=
3
x
3
\newline
2
×
(
x
2
2
)
=
x
2
2 \times \left(\frac{x^2}{2}\right) = x^2
2
×
(
2
x
2
)
=
x
2
\newline
4
x
=
4
x
4x = 4x
4
x
=
4
x
Combine Results:
Combine the results and add the constant of integration
C
C
C
.
3
x
3
−
x
2
−
4
x
+
C
3x^3 - x^2 - 4x + C
3
x
3
−
x
2
−
4
x
+
C
More problems from Find indefinite integrals using the substitution
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant