Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(8x^(3)+7x^(2)-1)/(x^(2))dx
Answer:

Evaluate the integral.\newline8x3+7x21x2 dx \int \frac{8 x^{3}+7 x^{2}-1}{x^{2}} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline8x3+7x21x2 dx \int \frac{8 x^{3}+7 x^{2}-1}{x^{2}} \mathrm{~d} x \newlineAnswer:
  1. Simplify integrand: Simplify the integrand by dividing each term by x2x^2. We have the integral: (8x3+7x21x2)dx\int\left(\frac{8x^3 + 7x^2 - 1}{x^2}\right)dx This simplifies to: (8x+7x2)dx\int(8x + 7 - x^{-2})dx
  2. Integrate each term: Integrate each term separately.\newlineThe integral of 8x8x with respect to xx is 8x22\frac{8x^2}{2}.\newlineThe integral of 77 with respect to xx is 7x7x.\newlineThe integral of x2x^{-2} with respect to xx is x1-x^{-1}.\newlineSo we have:\newline(82)x2+7x(1)x1+C(\frac{8}{2})x^2 + 7x - (-1)x^{-1} + C
  3. Simplify result: Simplify the result from Step 22.\newlineSimplifying the expression, we get:\newline4x2+7x+x1+C4x^2 + 7x + x^{-1} + C\newlineThis is the indefinite integral of the given function.