Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-6xe^(-x)dx
Answer:

Evaluate the integral.\newline6xexdx \int-6 x e^{-x} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline6xexdx \int-6 x e^{-x} d x \newlineAnswer:
  1. Set up integration by parts: Let's use integration by parts to evaluate the integral of 6xex-6xe^{-x} with respect to xx. Integration by parts is given by the formula udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are parts of the integrand that we choose. We will let u=6xu = -6x and dv=exdxdv = e^{-x}dx. Then we need to find dudu and vv.\newlineCalculating dudu and vv:\newlinexx11 (derivative of xx22 with respect to xx)\newlinexx44 (antiderivative of xx55 with respect to xx)
  2. Calculate du and v: Now we apply the integration by parts formula:\newline6xexdx=uvvdu\int -6xe^{-x}dx = uv - \int v du\newlineSubstituting the values of uu, vv, dudu, and dvdv we found:\newline6xexdx=(6x)(ex)(ex)(6)dx\int -6xe^{-x}dx = (-6x)(-e^{-x}) - \int(-e^{-x})(-6)dx\newlineSimplifying the expression:\newline6xexdx=6xex6exdx\int -6xe^{-x}dx = 6xe^{-x} - \int 6e^{-x}dx
  3. Apply integration by parts: Next, we integrate the remaining integral 6exdx\int 6e^{-x}\,dx. The antiderivative of 6ex6e^{-x} with respect to xx is 6ex-6e^{-x}, since the derivative of 6ex-6e^{-x} is 6ex6e^{-x}.\newlineSo, 6exdx=6ex+C\int 6e^{-x}\,dx = -6e^{-x} + C, where CC is the constant of integration.
  4. Integrate remaining integral: Now we combine the results from the previous steps:\newline6xexdx=6xex(6ex+C)\int -6xe^{-x}\,dx = 6xe^{-x} - (-6e^{-x} + C)\newlineSimplifying the expression:\newline6xexdx=6xex+6ex+C\int -6xe^{-x}\,dx = 6xe^{-x} + 6e^{-x} + C