Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-6x sin(-x)dx
Answer:

Evaluate the integral.\newline6xsin(x)dx \int-6 x \sin (-x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline6xsin(x)dx \int-6 x \sin (-x) d x \newlineAnswer:
  1. Rewrite Integral: Rewrite the integral by taking the constant 6-6 outside and using the property sin(x)=sin(x)\sin(-x) = -\sin(x).6xsin(x)dx=6x(sin(x))dx\int -6x \sin(-x)\,dx = -6 \int x (-\sin(x))\,dx=6xsin(x)dx= 6 \int x \sin(x)\,dx
  2. Integration by Parts: Apply integration by parts, where u=xu = x and dv=sin(x)dxdv = \sin(x)dx. Then, du=dxdu = dx and v=cos(x)v = -\cos(x). Using the integration by parts formula udv=uvvdu\int u\,dv = uv - \int v\,du, we get: \int x \sin(x)dx = x(-\cos(x)) - \int(-\cos(x))(dx) = -x \cos(x) + \int \cos(x)dx
  3. Integrate Cos: Integrate \(\cos(x) with respect to xx.cos(x)dx=sin(x)\int\cos(x)\,dx = \sin(x)
  4. Substitute Integral: Substitute the integral of cos(x)\cos(x) back into the equation.6(xcos(x)+sin(x))+C=6xcos(x)6sin(x)+C-6 ( -x \cos(x) + \sin(x) ) + C = 6x \cos(x) - 6 \sin(x) + C, where CC is the constant of integration.
  5. Final Answer: Write the final answer.\newlineThe integral of 6xsin(x)-6x \sin(-x) with respect to xx is 6xcos(x)6sin(x)+C6x \cos(x) - 6 \sin(x) + C.