Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-5x cos(3x)dx
Answer:

Evaluate the integral.\newline5xcos(3x)dx \int-5 x \cos (3 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline5xcos(3x)dx \int-5 x \cos (3 x) d x \newlineAnswer:
  1. Choose uu and dvdv: To solve the integral of 5xcos(3x)-5x \cos(3x) with respect to xx, we will use integration by parts, which is given by the formula udv=uvvdu\int u \, dv = uv - \int v \, du. We need to choose uu and dvdv such that the resulting integral is simpler to solve.\newlineLet's choose u=5xu = -5x (which gives us du=5dxdu = -5 \, dx) and dv=cos(3x)dxdv = \cos(3x) \, dx (which gives us dvdv00 after integration).
  2. Apply integration by parts: Now we apply the integration by parts formula:\newline5xcos(3x)dx=uvvdu\int -5x \cos(3x) \, dx = uv - \int v \, du\newline= (5x)(13)sin(3x)(13)sin(3x)(5)dx(-5x)(\frac{1}{3})\sin(3x) - \int(\frac{1}{3})\sin(3x)(-5) \, dx\newline= (53)xsin(3x)+(53)sin(3x)dx(-\frac{5}{3})x \sin(3x) + (\frac{5}{3})\int\sin(3x) \, dx
  3. Integrate sin(3x)\sin(3x): Next, we integrate (5/3)sin(3x)dx(5/3)\int \sin(3x) \, dx. The integral of sin(3x)\sin(3x) with respect to xx is (1/3)cos(3x)(-1/3)\cos(3x), so we have:\newline(5/3)sin(3x)dx=(5/3)(1/3)cos(3x)+C=(5/9)cos(3x)+C(5/3)\int \sin(3x) \, dx = (5/3)(-1/3)\cos(3x) + C = -(5/9)\cos(3x) + C, where CC is the constant of integration.
  4. Combine calculated parts: Combining the two parts we have calculated, we get the final answer for the integral:\newline\int \(-5x \cos(33x) \, dx = \left(-\frac{55}{33}\right)x \sin(33x) - \left(\frac{55}{99}\right)\cos(33x) + C