Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int((5)/(x^(5))-9x^(5))dx
Answer:

Evaluate the integral.\newline(5x59x5)dx \int\left(\frac{5}{x^{5}}-9 x^{5}\right) \mathrm{d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(5x59x5)dx \int\left(\frac{5}{x^{5}}-9 x^{5}\right) \mathrm{d} x \newlineAnswer:
  1. Given Integral: We are given the integral to evaluate:\newline((5x5)9x5)dx\int((\frac{5}{x^5}) - 9x^5)dx\newlineWe can split this integral into two separate integrals:\newline(5x5)dx(9x5)dx\int(\frac{5}{x^5})dx - \int(9x^5)dx\newlineNow we will integrate each term separately.
  2. Split into Two: First, let's integrate (5x5)dx\int(\frac{5}{x^5})dx. This is the same as 5x5dx\int 5x^{-5}dx. To integrate xnx^n, we use the power rule for integration, which states that xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C, where n1n \neq -1. Applying this rule, we get: 5x5dx=5x5+15+1+C=5x44+C=54x4+C\int 5x^{-5}dx = 5 * \frac{x^{-5+1}}{-5+1} + C = 5 * \frac{x^{-4}}{-4} + C = -\frac{5}{4} * x^{-4} + C
  3. Integrate 5x5\frac{5}{x^5}: Next, we integrate (9x5)dx\int(9x^5)dx.\newlineAgain, using the power rule for integration:\newline9x5dx=9x5+15+1+C\int 9x^5 dx = 9 \cdot \frac{x^{5+1}}{5+1} + C\newline=9x66+C= 9 \cdot \frac{x^6}{6} + C\newline=32x6+C= \frac{3}{2} \cdot x^6 + C
  4. Integrate 9x59x^5: Now we combine the results of the two integrals:\newline54x4+32x6+C-\frac{5}{4} * x^{-4} + \frac{3}{2} * x^6 + C\newlineThis is the antiderivative of the given function.
  5. Combine Results: We can write the final answer as: 54x4+32x6+C-\frac{5}{4} \cdot x^{-4} + \frac{3}{2} \cdot x^6 + C