Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-4x ln(6x)dx
Answer:

Evaluate the integral.\newline4xln(6x)dx \int-4 x \ln (6 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline4xln(6x)dx \int-4 x \ln (6 x) d x \newlineAnswer:
  1. Choose u and dv: Let's use integration by parts to solve the integral 4xln(6x)dx\int -4x \ln(6x) \, dx. Integration by parts is given by the formula udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are parts of the integrand we choose to differentiate and integrate, respectively.\newlineChoose u=ln(6x)u = \ln(6x) and dv=4xdxdv = -4x \, dx. Then we need to compute dudu and vv.\newlineDifferentiate uu to get dudu:\newlineudv=uvvdu\int u \, dv = uv - \int v \, du00.\newlineIntegrate dvdv to get vv:\newlineudv=uvvdu\int u \, dv = uv - \int v \, du33.\newlineNow we have uu, dvdv, dudu, and vv.
  2. Apply integration by parts: Apply the integration by parts formula:\newline4xln(6x)dx=uvvdu\int -4x \ln(6x) \, dx = uv - \int v \, du.\newlineSubstitute the values of uu, dvdv, dudu, and vv into the formula:\newline4xln(6x)dx=ln(6x)(2x2)2x2dx\int -4x \ln(6x) \, dx = \ln(6x) \cdot (-2x^2) - \int -2x^2 \, dx.\newlineNow we need to integrate 2x2-2x^2.
  3. Integrate dv to get v: Integrate 2x2-2x^2 with respect to xx:\newline2x2dx=23x3+C\int -2x^2 \, dx = -\frac{2}{3}x^3 + C, where CC is the constant of integration.\newlineNow we can write the full expression for the integral:\newline4xln(6x)dx=2x2ln(6x)(23x3+C)\int -4x \ln(6x) \, dx = -2x^2 \ln(6x) - \left(-\frac{2}{3}x^3 + C\right).\newlineSimplify the expression:\newline4xln(6x)dx=2x2ln(6x)+23x3+C\int -4x \ln(6x) \, dx = -2x^2 \ln(6x) + \frac{2}{3}x^3 + C.