Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(4x^(4)+24x^(3)-8x^(2))/(x)dx
Answer:

Evaluate the integral.\newline4x4+24x38x2x dx \int \frac{4 x^{4}+24 x^{3}-8 x^{2}}{x} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline4x4+24x38x2x dx \int \frac{4 x^{4}+24 x^{3}-8 x^{2}}{x} \mathrm{~d} x \newlineAnswer:
  1. Simplify the integrand: We are given the integral: \newline4x4+24x38x2xdx\int\frac{4x^{4}+24x^{3}-8x^{2}}{x}\,dx\newlineFirst, we simplify the integrand by dividing each term by xx.\newline4x4+24x38x2x=4x41+24x318x21\frac{4x^{4}+24x^{3}-8x^{2}}{x} = 4x^{4-1} + 24x^{3-1} - 8x^{2-1}\newline=4x3+24x28x= 4x^3 + 24x^2 - 8x
  2. Integrate each term: Now we integrate each term separately. \newline(4x3)dx+(24x2)dx(8x)dx\int(4x^3)\,dx + \int(24x^2)\,dx - \int(8x)\,dx\newlineUsing the power rule for integration, we add 11 to the exponent and divide by the new exponent.\newline(4x3)dx=(44)x3+1=x4\int(4x^3)\,dx = \left(\frac{4}{4}\right)x^{3+1} = x^4\newline(24x2)dx=(243)x2+1=8x3\int(24x^2)\,dx = \left(\frac{24}{3}\right)x^{2+1} = 8x^3\newline(8x)dx=(82)x1+1=4x2\int(8x)\,dx = \left(\frac{8}{2}\right)x^{1+1} = 4x^2
  3. Combine and add constant: Combine the results of the integrations and add the constant of integration CC.x4+8x3+4x2+Cx^4 + 8x^3 + 4x^2 + C