Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(4x^(3)+6x-8)/(x^(3))dx
Answer:

Evaluate the integral.\newline4x3+6x8x3 dx \int \frac{4 x^{3}+6 x-8}{x^{3}} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline4x3+6x8x3 dx \int \frac{4 x^{3}+6 x-8}{x^{3}} \mathrm{~d} x \newlineAnswer:
  1. Given Integral Simplification: We are given the integral: (4x3+6x8x3)dx\int\left(\frac{4x^{3}+6x-8}{x^{3}}\right)dx First, we simplify the integrand by dividing each term in the numerator by x3x^3: (4x3x3+6xx38x3)dx\int\left(\frac{4x^{3}}{x^{3}} + \frac{6x}{x^{3}} - \frac{8}{x^{3}}\right)dx This simplifies to: (4+6x28x3)dx\int(4 + \frac{6}{x^2} - \frac{8}{x^3})dx
  2. Integrating Each Term: Now we integrate each term separately:\newline4dx+6x2dx8x3dx\int 4 \, dx + \int \frac{6}{x^2} \, dx - \int \frac{8}{x^3} \, dx\newlineThe integral of a constant is the constant times xx, and the integral of xnx^n is xn+1n+1\frac{x^{n+1}}{n+1} for n1n \neq -1. So we have:\newline4x+6×x2dx8×x3dx4x + 6 \times \int x^{-2} \, dx - 8 \times \int x^{-3} \, dx
  3. Final Integration: We can now integrate the remaining terms: 4x+6(1/x)8(1/2x2)+C4x + 6 \cdot (-1/x) - 8 \cdot (-1/2x^2) + C Here, we have used the power rule for integration, which states that the integral of xnx^n is x(n+1)/(n+1)x^{(n+1)}/(n+1) for n1n \neq -1, and we have added the constant of integration CC.
  4. Expression Simplification: Simplify the expression:\newline4x6x+4x2+C4x - \frac{6}{x} + \frac{4}{x^2} + C\newlineThis is the antiderivative of the given function.