Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-4x^(-2)ln(x)dx
Answer:

Evaluate the integral.\newline4x2ln(x)dx \int-4 x^{-2} \ln (x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline4x2ln(x)dx \int-4 x^{-2} \ln (x) d x \newlineAnswer:
  1. Write Integral: Let's denote the integral by II and start by writing it down:\newlineI=4x2ln(x)dxI = \int -4x^{-2}\ln(x)\,dx\newlineWe can simplify the integral by factoring out the constant 4-4:\newlineI=4x2ln(x)dxI = -4\int x^{-2}\ln(x)\,dx\newlineNow we have an integral of the form xnln(x)dx\int x^n \ln(x)\,dx, which can be solved using integration by parts.\newlineIntegration by parts formula is udv=uvvdu\int u \, dv = uv - \int v \, du, where we need to choose uu and dvdv.\newlineLet's choose u=ln(x)u = \ln(x) and dv=x2dxdv = x^{-2}\,dx.\newlineThen we need to compute I=4x2ln(x)dxI = \int -4x^{-2}\ln(x)\,dx00 and I=4x2ln(x)dxI = \int -4x^{-2}\ln(x)\,dx11:\newlineI=4x2ln(x)dxI = \int -4x^{-2}\ln(x)\,dx22 and I=4x2ln(x)dxI = \int -4x^{-2}\ln(x)\,dx33\newlineNow we can apply the integration by parts formula.
  2. Simplify Integral: Applying integration by parts:\newlineI=4(uvvdu)I = -4(uv - \int v du)\newlineI=4(ln(x)(x1)(x1)(1/x)dx)I = -4(\ln(x)(-x^{-1}) - \int(-x^{-1})(1/x)dx)\newlineSimplify the expression:\newlineI=4x1ln(x)(1/x2)dxI = 4x^{-1}\ln(x) - \int(-1/x^2)dx\newlineThe integral of 1/x2-1/x^2 is 1/x1/x, so we can integrate that directly.
  3. Apply Integration by Parts: Continuing with the integration:\newlineI=4x1ln(x)+4(1x2)dxI = 4x^{-1}\ln(x) + 4\int(\frac{1}{x^2})dx\newlineI=4x1ln(x)+4(1x)I = 4x^{-1}\ln(x) + 4(-\frac{1}{x})\newlineNow we can simplify the expression:\newlineI=4xln(x)4x+CI = \frac{4}{x} \cdot \ln(x) - \frac{4}{x} + C, where CC is the constant of integration.\newlineThis is the final answer for the indefinite integral.