Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int((4)/(x^(2))+(24)/(x^(4)))dx
Answer:

Evaluate the integral.\newline(4x2+24x4)dx \int\left(\frac{4}{x^{2}}+\frac{24}{x^{4}}\right) \mathrm{d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(4x2+24x4)dx \int\left(\frac{4}{x^{2}}+\frac{24}{x^{4}}\right) \mathrm{d} x \newlineAnswer:
  1. Given integral: We are given the integral: \newline(4x2+24x4)dx\int\left(\frac{4}{x^{2}}+\frac{24}{x^{4}}\right)dx\newlineWe can split this integral into two separate integrals:\newline4x2dx+24x4dx\int\frac{4}{x^2}dx + \int\frac{24}{x^4}dx
  2. Split into two: Now we will integrate the first part:\newline4x2dx\int \frac{4}{x^2}\,dx\newlineThis is the same as:\newline4x2dx\int 4x^{-2}\,dx\newlineThe integral of xnx^n is xn+1n+1\frac{x^{n+1}}{n+1} for n1n \neq -1, so we apply this rule:\newline4x2dx=4(x1)=4x4 \cdot \int x^{-2}\,dx = 4 \cdot (-x^{-1}) = -\frac{4}{x}
  3. Integrate first part: Next, we will integrate the second part:\newline24x4dx\int \frac{24}{x^4}\,dx\newlineThis is the same as:\newline24x4dx\int 24x^{-4}\,dx\newlineAgain, we use the power rule for integration:\newline24x4dx=24(13)x3=8x3=8x324 \cdot \int x^{-4}\,dx = 24 \cdot \left(-\frac{1}{3}\right)x^{-3} = -8x^{-3} = -\frac{8}{x^3}
  4. Integrate second part: Now we combine the results of the two integrals and add the constant of integration CC: 4x8x3+C-\frac{4}{x} - \frac{8}{x^3} + C