Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(-30x^(5)+18x^(2))dx
Answer:

Evaluate the integral.\newline(30x5+18x2)dx \int\left(-30 x^{5}+18 x^{2}\right) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(30x5+18x2)dx \int\left(-30 x^{5}+18 x^{2}\right) d x \newlineAnswer:
  1. Given Integral: We are given the integral to evaluate: (30x5+18x2)dx\int(-30x^5 + 18x^2)dx We will integrate the function term by term.
  2. Integrating 30x5-30x^5: First, we integrate the term 30x5-30x^5 with respect to xx. The antiderivative of xnx^n is (x(n+1))/(n+1)(x^{(n+1)})/(n+1), so the antiderivative of 30x5-30x^5 is: (30x5)dx=30(x(5+1))/(5+1)=30(x6)/6\int(-30x^5)dx = -30 \cdot (x^{(5+1)})/(5+1) = -30 \cdot (x^6)/6 Simplifying, we get: 5x6-5x^6
  3. Integrating 18x218x^2: Next, we integrate the term 18x218x^2 with respect to xx. The antiderivative of xnx^n is (x(n+1))/(n+1)(x^{(n+1)})/(n+1), so the antiderivative of 18x218x^2 is: (18x2)dx=18(x(2+1))/(2+1)=18(x3)/3\int(18x^2)dx = 18 \cdot (x^{(2+1)})/(2+1) = 18 \cdot (x^3)/3 Simplifying, we get: 6x36x^3
  4. Combining Results: Now, we combine the results of the two integrals and add the constant of integration CC. The final indefinite integral is: 5x6+6x3+C-5x^6 + 6x^3 + C