Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-2xe^(4x)dx
Answer:

Evaluate the integral.\newline2xe4xdx \int-2 x e^{4 x} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2xe4xdx \int-2 x e^{4 x} d x \newlineAnswer:
  1. Identify integral: Identify the integral that needs to be evaluated.\newlineThe integral to be evaluated is 2xe4xdx\int -2xe^{4x}\,dx.
  2. Recognize form: Recognize that the integral is in the form suitable for integration by parts. Integration by parts is given by the formula udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are parts of the integrand.
  3. Choose uu and dvdv: Choose uu and dvdv.\newlineLet u=2xu = -2x, which implies du=2dxdu = -2\,dx.\newlineLet dv=e4xdxdv = e^{4x}\,dx, which implies v=14e4xv = \frac{1}{4}e^{4x} after integrating dvdv.
  4. Apply integration by parts: Apply the integration by parts formula.\newlineUsing the integration by parts formula, we get:\newline2xe4xdx=uvvdu\int -2xe^{4x}\,dx = uv - \int v\,du\newline=(2x)(14)e4x(14)e4x(2dx)= (-2x)(\frac{1}{4})e^{4x} - \int(\frac{1}{4})e^{4x}(-2\,dx)\newline=(12)xe4x+(12)e4xdx= (-\frac{1}{2})xe^{4x} + (\frac{1}{2})\int e^{4x}\,dx
  5. Integrate remaining integral: Integrate the remaining integral.\newlineThe remaining integral is e4xdx\int e^{4x}\,dx, which is 14e4x\frac{1}{4}e^{4x} after integration.
  6. Substitute result: Substitute the result of the integration back into the equation.\newlineSubstituting the result from Step 55 into the equation from Step 44, we get:\newline2xe4xdx=(12)xe4x+(12)(14)e4x+C\int -2xe^{4x}\,dx = (-\frac{1}{2})xe^{4x} + (\frac{1}{2})(\frac{1}{4})e^{4x} + C\newline=(12)xe4x+18e4x+C= (-\frac{1}{2})xe^{4x} + \frac{1}{8}e^{4x} + C
  7. Combine final answer: Combine like terms and write the final answer.\newlineThe final answer is:\newline\int \(-2xe^{44x}\,dx = \left(-\frac{11}{22}\right)xe^{44x} + \left(\frac{11}{88}\right)e^{44x} + C