Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(2x^(4)-3x^(3)+x)/(x^(3))dx
Answer:

Evaluate the integral.\newline2x43x3+xx3 dx \int \frac{2 x^{4}-3 x^{3}+x}{x^{3}} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2x43x3+xx3 dx \int \frac{2 x^{4}-3 x^{3}+x}{x^{3}} \mathrm{~d} x \newlineAnswer:
  1. Simplify integrand: We start by simplifying the integrand by dividing each term by x3x^3. \newline(2x43x3+x)/x3=2x433x33+x13(2x^4 - 3x^3 + x) / x^3 = 2x^{4-3} - 3x^{3-3} + x^{1-3}\newline=2x3+x2= 2x - 3 + x^{-2}
  2. Integrate simplified terms: Now we integrate each term separately.\newline\int(\(2x - 33 + x^{2-2})\,dx = \int 22x\,dx - \int 33\,dx + \int x^{2-2}\,dx
  3. Combine integrated terms: Integrate each term.\newline2xdx=2×12×x2=x2\int 2x\,dx = 2 \times \frac{1}{2} \times x^2 = x^2\newline3dx=3x\int 3\,dx = 3x\newlinex2dx=x2+12+1=x1\int x^{-2}\,dx = \frac{x^{-2+1}}{-2+1} = -x^{-1}
  4. Add constant of integration: Combine the integrated terms and add the constant of integration CC.x23xx1+Cx^2 - 3x - x^{-1} + C
  5. Final answer notation: Rewrite the final answer in a more conventional notation, replacing x1x^{-1} with 1x\frac{1}{x}.x23x1x+Cx^2 - 3x - \frac{1}{x} + C