Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Evaluate the integral.
\newline
∫
2
x
4
−
3
x
3
+
x
x
3
d
x
\int \frac{2 x^{4}-3 x^{3}+x}{x^{3}} \mathrm{~d} x
∫
x
3
2
x
4
−
3
x
3
+
x
d
x
\newline
Answer:
View step-by-step help
Home
Math Problems
Calculus
Find indefinite integrals using the substitution
Full solution
Q.
Evaluate the integral.
\newline
∫
2
x
4
−
3
x
3
+
x
x
3
d
x
\int \frac{2 x^{4}-3 x^{3}+x}{x^{3}} \mathrm{~d} x
∫
x
3
2
x
4
−
3
x
3
+
x
d
x
\newline
Answer:
Simplify integrand:
We start by simplifying the integrand by dividing each term by
x
3
x^3
x
3
.
\newline
(
2
x
4
−
3
x
3
+
x
)
/
x
3
=
2
x
4
−
3
−
3
x
3
−
3
+
x
1
−
3
(2x^4 - 3x^3 + x) / x^3 = 2x^{4-3} - 3x^{3-3} + x^{1-3}
(
2
x
4
−
3
x
3
+
x
)
/
x
3
=
2
x
4
−
3
−
3
x
3
−
3
+
x
1
−
3
\newline
=
2
x
−
3
+
x
−
2
= 2x - 3 + x^{-2}
=
2
x
−
3
+
x
−
2
Integrate simplified terms:
Now we integrate each term separately.
\newline
\int(\(2x -
3
3
3
+ x^{
−
2
-2
−
2
})\,dx = \int
2
2
2
x\,dx - \int
3
3
3
\,dx + \int x^{
−
2
-2
−
2
}\,dx
Combine integrated terms:
Integrate each term.
\newline
∫
2
x
d
x
=
2
×
1
2
×
x
2
=
x
2
\int 2x\,dx = 2 \times \frac{1}{2} \times x^2 = x^2
∫
2
x
d
x
=
2
×
2
1
×
x
2
=
x
2
\newline
∫
3
d
x
=
3
x
\int 3\,dx = 3x
∫
3
d
x
=
3
x
\newline
∫
x
−
2
d
x
=
x
−
2
+
1
−
2
+
1
=
−
x
−
1
\int x^{-2}\,dx = \frac{x^{-2+1}}{-2+1} = -x^{-1}
∫
x
−
2
d
x
=
−
2
+
1
x
−
2
+
1
=
−
x
−
1
Add constant of integration:
Combine the integrated terms and add the constant of integration
C
C
C
.
x
2
−
3
x
−
x
−
1
+
C
x^2 - 3x - x^{-1} + C
x
2
−
3
x
−
x
−
1
+
C
Final answer notation:
Rewrite the final answer in a more conventional notation, replacing
x
−
1
x^{-1}
x
−
1
with
1
x
\frac{1}{x}
x
1
.
x
2
−
3
x
−
1
x
+
C
x^2 - 3x - \frac{1}{x} + C
x
2
−
3
x
−
x
1
+
C
More problems from Find indefinite integrals using the substitution
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant