Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-2x^(2)ln(4x)dx
Answer:

Evaluate the integral.\newline2x2ln(4x)dx \int-2 x^{2} \ln (4 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2x2ln(4x)dx \int-2 x^{2} \ln (4 x) d x \newlineAnswer:
  1. Identify integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 2x2ln(4x)-2x^2\ln(4x) with respect to xx.\newlineI=2x2ln(4x)dxI = \int -2x^2\ln(4x)\,dx
  2. Apply integration by parts: Apply integration by parts. Integration by parts formula is udv=uvvdu\int u\,dv = uv - \int v\,du. Let u=ln(4x)u = \ln(4x) and dv=2x2dxdv = -2x^2\,dx. Then we need to find dudu and vv. du=(1/x)dxdu = (1/x)\,dx and v=2x2dxv = \int -2x^2\,dx.
  3. Calculate vv: Calculate vv.
    v=2x2dxv = \int -2x^2 \, dx
    v=2×(13)x3v = -2 \times \left(\frac{1}{3}\right)x^3
    v=23x3v = -\frac{2}{3}x^3
  4. Apply integration by parts formula: Apply the integration by parts formula.\newlineI=uvvduI = uv - \int vdu\newlineI=ln(4x)(23x3)(23x3)(1x)dxI = \ln(4x) \cdot \left(-\frac{2}{3}x^3\right) - \int\left(-\frac{2}{3}x^3\right) \cdot \left(\frac{1}{x}\right)dx\newlineI=23x3ln(4x)+23x2dxI = -\frac{2}{3}x^3\ln(4x) + \frac{2}{3}\int x^2dx
  5. Integrate remaining term: Integrate the remaining term. x2dx=13x3\int x^2 \, dx = \frac{1}{3}x^3
  6. Substitute integral: Substitute the integral into the equation.\newlineI=23x3ln(4x)+23×13x3I = -\frac{2}{3}x^3\ln(4x) + \frac{2}{3} \times \frac{1}{3}x^3\newlineI=23x3ln(4x)+29x3I = -\frac{2}{3}x^3\ln(4x) + \frac{2}{9}x^3
  7. Add constant of integration: Add the constant of integration.\newlineI=23x3ln(4x)+29x3+CI = -\frac{2}{3}x^3\ln(4x) + \frac{2}{9}x^3 + C