Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(28x^(3)+6x^(2))dx
Answer:

Evaluate the integral.\newline(28x3+6x2)dx \int\left(28 x^{3}+6 x^{2}\right) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(28x3+6x2)dx \int\left(28 x^{3}+6 x^{2}\right) d x \newlineAnswer:
  1. Given integral: We are given the integral to evaluate: (28x3+6x2)dx\int(28x^{3}+6x^{2})dx We will integrate term by term.
  2. Integrating 28x328x^3: The integral of 28x328x^3 with respect to xx is: (28x3)dx=(284)x3+1=7x4\int(28x^{3})dx = \left(\frac{28}{4}\right)x^{3+1} = 7x^4
  3. Integrating 6x26x^2: The integral of 6x26x^2 with respect to xx is:\newline(6x2)dx=(63)x2+1=2x3\int(6x^{2})dx = \left(\frac{6}{3}\right)x^{2+1} = 2x^3
  4. Adding integrals and constant: Now we add the two integrals together and include the constant of integration CC: 7x4+2x3+C7x^4 + 2x^3 + C