Given Integral Split: We are given the integral to evaluate: ∫(−x524+10x4)dxWe can split this integral into two separate integrals:∫(−x524)dx+∫(10x4)dx
Evaluate First Term: Let's first evaluate the integral of the first term:∫(−x524)dxThis is a simple power rule integration. We add 1 to the exponent and divide by the new exponent:−24×∫(x−5)dx=−24×(−5+1x−5+1)+C=−24×(−4x−4)+C=6x−4+C
Evaluate Second Term: Now let's evaluate the integral of the second term:∫(10x4)dxAgain, we use the power rule for integration:10×∫(x4)dx=10×(x4+1/(4+1))+C=10×(x5/5)+C=2x5+C
Combine Results: Combining the results from both integrals, we get the final answer: 6x−4+2x5+C
More problems from Find indefinite integrals using the substitution