Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(-(24)/(x^(5))+10x^(4))dx
Answer:

Evaluate the integral.\newline(24x5+10x4)dx \int\left(-\frac{24}{x^{5}}+10 x^{4}\right) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(24x5+10x4)dx \int\left(-\frac{24}{x^{5}}+10 x^{4}\right) d x \newlineAnswer:
  1. Given Integral Split: We are given the integral to evaluate: \newline(24x5+10x4)dx\int(-\frac{24}{x^5} + 10x^4)\,dx\newlineWe can split this integral into two separate integrals:\newline(24x5)dx+(10x4)dx\int(-\frac{24}{x^5})\,dx + \int(10x^4)\,dx
  2. Evaluate First Term: Let's first evaluate the integral of the first term:\newline(24x5)dx\int(-\frac{24}{x^5})dx\newlineThis is a simple power rule integration. We add 11 to the exponent and divide by the new exponent:\newline24×(x5)dx=24×(x5+15+1)+C-24 \times \int(x^{-5})dx = -24 \times (\frac{x^{-5+1}}{-5+1}) + C\newline=24×(x44)+C= -24 \times (\frac{x^{-4}}{-4}) + C\newline=6x4+C= 6x^{-4} + C
  3. Evaluate Second Term: Now let's evaluate the integral of the second term:\newline(10x4)dx\int(10x^4)dx\newlineAgain, we use the power rule for integration:\newline10×(x4)dx=10×(x4+1/(4+1))+C10 \times \int(x^4)dx = 10 \times (x^{4+1}/(4+1)) + C\newline=10×(x5/5)+C= 10 \times (x^5/5) + C\newline=2x5+C= 2x^5 + C
  4. Combine Results: Combining the results from both integrals, we get the final answer: 6x4+2x5+C6x^{-4} + 2x^5 + C