Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(21x^(4)-3x^(2)-6)/(x^(2))dx
Answer:

Evaluate the integral.\newline21x43x26x2 dx \int \frac{21 x^{4}-3 x^{2}-6}{x^{2}} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline21x43x26x2 dx \int \frac{21 x^{4}-3 x^{2}-6}{x^{2}} \mathrm{~d} x \newlineAnswer:
  1. Simplify integrand: We are given the integral:\newline(21x43x26x2)dx\int(\frac{21x^4 - 3x^2 - 6}{x^2})dx\newlineFirst, we simplify the integrand by dividing each term by x2x^2.\newline(21x4x2)=21x(42)=21x2(\frac{21x^4}{x^2}) = 21x^{(4-2)} = 21x^2\newline(3x2x2)=3x(22)=3(\frac{-3x^2}{x^2}) = -3x^{(2-2)} = -3\newline(6x2)=6x(2)(\frac{-6}{x^2}) = -6x^{(-2)}\newlineSo the integral becomes:\newline(21x236x2)dx\int(21x^2 - 3 - 6x^{-2})dx
  2. Integrate terms separately: Now we integrate each term separately.\newlineThe integral of 21x221x^2 with respect to xx is (213)x(2+1)=7x3(\frac{21}{3})x^{(2+1)} = 7x^3.\newlineThe integral of 3-3 with respect to xx is 3x-3x.\newlineThe integral of 6x2-6x^{-2} with respect to xx is 6(1)x2+1=6x1=6x-6(-1)x^{-2+1} = 6x^{-1} = \frac{6}{x}.\newlineSo the integral becomes:\newline7x33x+6x+C7x^3 - 3x + \frac{6}{x} + C, where xx00 is the constant of integration.