Given Integral Simplification: We are given the integral: ∫(x20x4+8x2+5x)dx First, we simplify the integrand by dividing each term by x. ∫(x20x4+x8x2+x5x)dx∫(20x3+8x+5)dx
Integrating Each Term: Now we integrate each term separately. ∫(20x3)dx+∫(8x)dx+∫(5)dxFor the first term, the integral of xn is (xn+1)/(n+1), so:∫(20x3)dx=20×(x3+1)/(3+1)=20×(x4)/4For the second term:∫(8x)dx=8×(x1+1)/(1+1)=8×(x2)/2For the third term:∫(5)dx=5x
Combining Integrals: Now we combine the results of the integrals.20×4x4+8×2x2+5xSimplify each term:420x4+28x2+5x5x4+4x2+5x
Adding Constant of Integration: Finally, we add the constant of integration C to the result.5x4+4x2+5x+C
More problems from Find indefinite integrals using the substitution