Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(20x^(4)+8x^(2)+5x)/(x)dx
Answer:

Evaluate the integral.\newline20x4+8x2+5xx dx \int \frac{20 x^{4}+8 x^{2}+5 x}{x} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline20x4+8x2+5xx dx \int \frac{20 x^{4}+8 x^{2}+5 x}{x} \mathrm{~d} x \newlineAnswer:
  1. Given Integral Simplification: We are given the integral: (20x4+8x2+5xx)dx\int\left(\frac{20x^{4}+8x^{2}+5x}{x}\right)dx First, we simplify the integrand by dividing each term by xx. (20x4x+8x2x+5xx)dx\int\left(\frac{20x^{4}}{x} + \frac{8x^{2}}{x} + \frac{5x}{x}\right)dx (20x3+8x+5)dx\int(20x^{3} + 8x + 5)dx
  2. Integrating Each Term: Now we integrate each term separately. \newline(20x3)dx+(8x)dx+(5)dx\int(20x^{3})\,dx + \int(8x)\,dx + \int(5)\,dx\newlineFor the first term, the integral of xnx^n is (xn+1)/(n+1)(x^{n+1})/(n+1), so:\newline(20x3)dx=20×(x3+1)/(3+1)=20×(x4)/4\int(20x^{3})\,dx = 20 \times (x^{3+1})/(3+1) = 20 \times (x^4)/4\newlineFor the second term:\newline(8x)dx=8×(x1+1)/(1+1)=8×(x2)/2\int(8x)\,dx = 8 \times (x^{1+1})/(1+1) = 8 \times (x^2)/2\newlineFor the third term:\newline(5)dx=5x\int(5)\,dx = 5x
  3. Combining Integrals: Now we combine the results of the integrals.\newline20×x44+8×x22+5x20 \times \frac{x^4}{4} + 8 \times \frac{x^2}{2} + 5x\newlineSimplify each term:\newline204x4+82x2+5x\frac{20}{4}x^4 + \frac{8}{2}x^2 + 5x\newline5x4+4x2+5x5x^4 + 4x^2 + 5x
  4. Adding Constant of Integration: Finally, we add the constant of integration CC to the result.\newline5x4+4x2+5x+C5x^4 + 4x^2 + 5x + C