Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(-16x^(3)-21x^(2))dx
Answer:

Evaluate the integral.\newline(16x321x2)dx \int\left(-16 x^{3}-21 x^{2}\right) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline(16x321x2)dx \int\left(-16 x^{3}-21 x^{2}\right) d x \newlineAnswer:
  1. Apply Power Rule: Apply the power rule for integration to each term separately. The power rule states that the integral of xnx^n with respect to xx is (x(n+1))/(n+1)+C(x^{(n+1)})/(n+1) + C, where CC is the constant of integration.
  2. Integrate 16x3-16x^3: Integrate the first term 16x3-16x^3. Using the power rule, we add 11 to the exponent and divide by the new exponent. Integral of 16x3dx=16×(x3+1)/(3+1)=16×(x4)/4=4x4-16x^3 \, dx = -16 \times (x^{3+1})/(3+1) = -16 \times (x^4)/4 = -4x^4
  3. Integrate 21x2-21x^2: Integrate the second term 21x2-21x^2. Using the power rule, we add 11 to the exponent and divide by the new exponent.21x2dx=21×x2+12+1=21×x33=7x3\int -21x^2 \, dx = -21 \times \frac{x^{2+1}}{2+1} = -21 \times \frac{x^3}{3} = -7x^3
  4. Combine Results: Combine the results of the integrals of both terms and add the constant of integration CC.(16x321x2)dx=4x47x3+C\int (-16x^3 - 21x^2) \, dx = -4x^4 - 7x^3 + C