Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Evaluate the integral.
\newline
∫
15
x
3
+
2
x
2
−
8
x
x
d
x
\int \frac{15 x^{3}+2 x^{2}-8 x}{x} \mathrm{~d} x
∫
x
15
x
3
+
2
x
2
−
8
x
d
x
\newline
Answer:
View step-by-step help
Home
Math Problems
Calculus
Find indefinite integrals using the substitution
Full solution
Q.
Evaluate the integral.
\newline
∫
15
x
3
+
2
x
2
−
8
x
x
d
x
\int \frac{15 x^{3}+2 x^{2}-8 x}{x} \mathrm{~d} x
∫
x
15
x
3
+
2
x
2
−
8
x
d
x
\newline
Answer:
Simplify integrand:
Simplify the integrand by dividing each term by
x
x
x
.
15
x
3
+
2
x
2
−
8
x
x
=
15
x
3
x
+
2
x
2
x
−
8
x
x
\frac{15x^{3}+2x^{2}-8x}{x} = \frac{15x^{3}}{x} + \frac{2x^{2}}{x} - \frac{8x}{x}
x
15
x
3
+
2
x
2
−
8
x
=
x
15
x
3
+
x
2
x
2
−
x
8
x
=
15
x
2
+
2
x
−
8
= 15x^{2} + 2x - 8
=
15
x
2
+
2
x
−
8
Integrate each term:
Integrate each term separately.
\newline
∫
(
15
x
2
+
2
x
−
8
)
d
x
=
∫
15
x
2
d
x
+
∫
2
x
d
x
−
∫
8
d
x
\int(15x^{2} + 2x - 8)\,dx = \int 15x^{2}\,dx + \int 2x\,dx - \int 8\,dx
∫
(
15
x
2
+
2
x
−
8
)
d
x
=
∫
15
x
2
d
x
+
∫
2
x
d
x
−
∫
8
d
x
\newline
=
15
∫
x
2
d
x
+
2
∫
x
d
x
−
8
∫
d
x
15\int x^{2}\,dx + 2\int x\,dx - 8\int dx
15
∫
x
2
d
x
+
2
∫
x
d
x
−
8
∫
d
x
Calculate integrals:
Calculate the integral of each term.
\newline
15
∫
x
2
d
x
=
15
×
(
x
2
+
1
2
+
1
)
=
15
×
(
x
3
3
)
15\int x^{2}\,dx = 15 \times \left(\frac{x^{2+1}}{2+1}\right) = 15 \times \left(\frac{x^3}{3}\right)
15
∫
x
2
d
x
=
15
×
(
2
+
1
x
2
+
1
)
=
15
×
(
3
x
3
)
\newline
2
∫
x
d
x
=
2
×
(
x
1
+
1
1
+
1
)
=
2
×
(
x
2
2
)
2\int x\,dx = 2 \times \left(\frac{x^{1+1}}{1+1}\right) = 2 \times \left(\frac{x^2}{2}\right)
2
∫
x
d
x
=
2
×
(
1
+
1
x
1
+
1
)
=
2
×
(
2
x
2
)
\newline
8
∫
d
x
=
8
x
8\int \,dx = 8x
8
∫
d
x
=
8
x
Combine results:
Combine the results and add the constant of integration
C
C
C
.
15
×
(
x
3
3
)
+
2
×
(
x
2
2
)
+
8
x
+
C
15 \times \left(\frac{x^3}{3}\right) + 2 \times \left(\frac{x^2}{2}\right) + 8x + C
15
×
(
3
x
3
)
+
2
×
(
2
x
2
)
+
8
x
+
C
=
5
x
3
+
x
2
+
8
x
+
C
= 5x^3 + x^2 + 8x + C
=
5
x
3
+
x
2
+
8
x
+
C
More problems from Find indefinite integrals using the substitution
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant