Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int(15x^(3)+2x^(2)-8x)/(x)dx
Answer:

Evaluate the integral.\newline15x3+2x28xx dx \int \frac{15 x^{3}+2 x^{2}-8 x}{x} \mathrm{~d} x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline15x3+2x28xx dx \int \frac{15 x^{3}+2 x^{2}-8 x}{x} \mathrm{~d} x \newlineAnswer:
  1. Simplify integrand: Simplify the integrand by dividing each term by xx.15x3+2x28xx=15x3x+2x2x8xx\frac{15x^{3}+2x^{2}-8x}{x} = \frac{15x^{3}}{x} + \frac{2x^{2}}{x} - \frac{8x}{x}=15x2+2x8= 15x^{2} + 2x - 8
  2. Integrate each term: Integrate each term separately.\newline(15x2+2x8)dx=15x2dx+2xdx8dx\int(15x^{2} + 2x - 8)\,dx = \int 15x^{2}\,dx + \int 2x\,dx - \int 8\,dx\newline= 15x2dx+2xdx8dx15\int x^{2}\,dx + 2\int x\,dx - 8\int dx
  3. Calculate integrals: Calculate the integral of each term.\newline15x2dx=15×(x2+12+1)=15×(x33)15\int x^{2}\,dx = 15 \times \left(\frac{x^{2+1}}{2+1}\right) = 15 \times \left(\frac{x^3}{3}\right)\newline2xdx=2×(x1+11+1)=2×(x22)2\int x\,dx = 2 \times \left(\frac{x^{1+1}}{1+1}\right) = 2 \times \left(\frac{x^2}{2}\right)\newline8dx=8x8\int \,dx = 8x
  4. Combine results: Combine the results and add the constant of integration CC.15×(x33)+2×(x22)+8x+C15 \times \left(\frac{x^3}{3}\right) + 2 \times \left(\frac{x^2}{2}\right) + 8x + C=5x3+x2+8x+C= 5x^3 + x^2 + 8x + C