Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral and express your answer in simplest form.

int(10)/(sqrt(16-4x^(2)))dx
Answer:

Evaluate the integral and express your answer in simplest form.\newline10164x2dx \int \frac{10}{\sqrt{16-4 x^{2}}} d x \newlineAnswer:

Full solution

Q. Evaluate the integral and express your answer in simplest form.\newline10164x2dx \int \frac{10}{\sqrt{16-4 x^{2}}} d x \newlineAnswer:
  1. Substitution: We are given the integral: \newline10164x2dx\int \frac{10}{\sqrt{16-4x^{2}}}dx\newlineTo solve this integral, we can use a trigonometric substitution. Let's choose x=2sin(θ)x = 2\sin(\theta), because the expression under the square root resembles the Pythagorean identity 1sin2(θ)=cos2(θ)1 - \sin^{2}(\theta) = \cos^{2}(\theta). This will simplify the square root.
  2. Differentiation: First, we need to find dxdx in terms of d(θ)d(\theta). Differentiating x=2sin(θ)x = 2\sin(\theta) with respect to θ\theta gives us:\newlinedxd(θ)=2cos(θ)\frac{dx}{d(\theta)} = 2\cos(\theta)\newlineTherefore, dx=2cos(θ)d(θ)dx = 2\cos(\theta)d(\theta)
  3. Integral Substitution: Now, we substitute x=2sin(θ)x = 2\sin(\theta) and dx=2cos(θ)d(θ)dx = 2\cos(\theta)d(\theta) into the integral:\newline10164x2dx=10164(2sin(θ))22cos(θ)d(θ)\int\frac{10}{\sqrt{16-4x^{2}}}dx = \int\frac{10}{\sqrt{16-4(2\sin(\theta))^2}} \cdot 2\cos(\theta)d(\theta)\newlineSimplify the expression under the square root:\newline10164(4sin2(θ))2cos(θ)d(θ)=101616sin2(θ)2cos(θ)d(θ)\int\frac{10}{\sqrt{16-4(4\sin^2(\theta))}} \cdot 2\cos(\theta)d(\theta) = \int\frac{10}{\sqrt{16-16\sin^2(\theta)}} \cdot 2\cos(\theta)d(\theta)
  4. Simplify Expression: The expression under the square root simplifies to 16cos2(θ)16\cos^2(\theta), using the Pythagorean identity:\newline(101616sin2(θ))2cos(θ)d(θ)=(1016cos2(θ))2cos(θ)d(θ)\int(\frac{10}{\sqrt{16-16\sin^2(\theta)}}) \cdot 2\cos(\theta)d(\theta) = \int(\frac{10}{\sqrt{16\cos^2(\theta)}}) \cdot 2\cos(\theta)d(\theta)\newlineSimplify the square root:\newline(104cos(θ))2cos(θ)d(θ)=(1042cos(θ)cos(θ))d(θ)\int(\frac{10}{4\cos(\theta)}) \cdot 2\cos(\theta)d(\theta) = \int(\frac{10}{4} \cdot \frac{2\cos(\theta)}{\cos(\theta)})d(\theta)
  5. Integrate with Respect: The cos(θ)\cos(\theta) terms cancel out, leaving us with:\newline(1042)d(θ)=(5)d(θ)\int(\frac{10}{4} \cdot 2)d(\theta) = \int(5)d(\theta)\newlineNow, integrate with respect to theta:\newline(5)d(θ)=5θ+C\int(5)d(\theta) = 5\theta + C
  6. Final Answer: We need to express the answer in terms of xx, so we have to substitute back for θ\theta using our original substitution x=2sin(θ)x = 2\sin(\theta). To find θ\theta, we use the inverse sine function:\newlineθ=arcsin(x2)\theta = \arcsin(\frac{x}{2})\newlineSo the integral in terms of xx is:\newline5θ+C=5arcsin(x2)+C5\theta + C = 5\arcsin(\frac{x}{2}) + C